
AD-.,,98 192

Heuristics
for Job-Shop

Scheduling

Kenneth Alan Pasc

MIT Artificial Intelligence Laboratory

DTIC
' AUG 2 91988

H

DISTiBUTiON STA-E&iT iA BEST AVAILABLE COPY

Approvrxi for public rel.aa.;
*.'*****,*.*.-*~*.~*. ~ ~ -

IP L r-OrHjpE) .i14f; 1 r,MM

2.TGOVT ACCtV1IIIN NO i, RECIPItNT'$ CATALOG NUMBER
N'; T 10] 30

4 I r L f L,,, . br (l , S. TYPE O f mREPO T & PERIQO COVERED

ii t',: for .1t0b)-,;b 1l) Sche(hl inhg technical report

6. PERFORMING ORG. REPORT NUMBER

/, AU 1 S/I. CONTRACT OR GRANT NUMBER(e)

Koi- ILLI l Man Paischi N000i4-86-K-0685
NOOO14-85-K-0124

9.iPErFORMING ONGANIZATION NAME ANO ADDRESS 10. PROGRAM r.LEmENT. PnOJtCT, TASK
AnA A WORK UNIT NUMBERS

Artificial Intelligence Laboratory

545 Technology Square
G;ambridge, MA 02139

11. CONTROLLING OFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency January 1988
1400 Wilson Blvd. i. NUMBER O PAGES

Arlington, VA 22209 163
14 MONITORING AGENCY NAME & AOORESS(II different Irom Coitrolln ins Offti) IS. SIECURITY CLASS. (of Ohl reporl)

Office of Naval Research UNCLASSIFIED
Information Systems .[..A

Arlington, VA 22217' as. SECLASIFICATION/OWNGRAINGSCHEDULE

16. OISTRIBUTION STATEMENT (of thie'Report)

Distribution is unlimited

17. DIV3 RIBUTION STATEMENT (f tHe abeI0,11 .N9 e,.d In B0ech ;0, it differnt hSS Redert)

Unlimited

IS. SUPPLEMENTARY NOTES

None

11. KEY WORDS (Continue on fewer&* Slde II neceseome aid idontify by Wock numberh)

scheduling
job-shop
heuristic
geometric

20. ABSTRACT (C nRtnue en rewere* sde Of negaeoe y ad identif by Nleck n m berJ

Two methoda of obtaining approximate solutions to the classic General Job-Shop

Scheduling Problem are investigated. The first method is iterative. A sampling of

the solution space is used to decide which of a collection of space pruning constraints

are consistent with "good" schedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune

with discrimination or to generate solutions directly.
DD ,"AN) 1473 EDITION Of INOVSSOSOSSOT UNCLASSIFIED

S/N 0:01014-66011. A UNCL SSI I

SIECURITY CLASSIFICATION 0f THIS PAO& (10%on Dots Intmtf

S

Block 20 cont.

Schedules can be represented. as trajectories through a cartesian space. Under
the objective criteria of Minimumi Maximum Lateness a family of "good" schedules
(trajectories) are geometric neighbors (reside within some "tube") in this space. This
second method of generating solutions takes advantage of this adjacency by pruning
the space from the outside in thus converging gradually upon this "tube." On the
average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares
favorably with a recent iterative relaxation procedure.

_ tion For .'

Accession For

NTIS GRA&I
DT7C TAB 5

Distribution/

Availability Codes

lAvall and/or

~Dist SpecialIv --I---
0

I

Heuristics for Job-Shop Scheduling
by

Kenneth Alan Pasch

B.S.M.E. Massachusetts Institute of Technology
(1981)

M.S.M.E. Massachusetts Institute of Technology
(1984)

Submitted to the
Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the Degree of

Doctor Of Science

at the
Massachusetts Institute Of Technology

January 1988

@Kenneth Alan Pasch, 1988

The author hereby grants to M.I.T. permission to reproduce and to dis-
tribute copies of this document in whole or in part.

Signature of Author ~/2t$

Kenneth Alan Pasch
Department of Mechanical Engineering

)January 23, 1988

Certified by

Professor Warren P. Seering
Committee Chairman

Accepted by

Ain A. Sonin

Chairman, Departmental Graduate Committee

0

Heuristics for

Job-Shop Scheduling

by

Kenneth Alan Pasch

Submitted to the Department of Mechanical Engineering on March 17,
1988 in partial fulfillment of the requirements for the degree of Doctor of
Science in Mechanical Engineering.

Abstract

Two methods of obtaining approximate solutions to the classic General Job-Shop
Scheduling Problem are investigated. The first method is iterative. A sampling of
the solution space is used to decide which of a collection of space pruning constraints

0 are consistent with 2good"'rschedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune
with discrimination or to generate solutions directly.

Schedules can be represented as trajectories through a cartesian space. Under
the objective criteria of Minimum Maximum Lateness a family ofgood%schedules
(trajectories) are geometric neighbors (reside within some tube) in this space. This
second method of generating solutions takes advantage of this adjacency by pruning
the space from the outside in thus converging gradually upon this"tube. On the
average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares
favorably with a recent iterative relaxation procedure. (Ic_)

Thesis Committee:
Prof Warren Seering, Chairperson
Prof. Stephen Graves
Prof. Tomas Lozano-Perez

0

Acknowledgments

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory's artificial
intelligence research is provided in part by the Office of Naval Research University
Research Initiative Program under Office of Naval Research contract N00014-86-
K-0685, and in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-85-K-0124. Support for
this research project is also provided in part by the IBM Corporation.

0

0 o

iii

0

Tomy parents:

iv

Contents

1 Introduction - Review1
1.1 General Problem DescriptionI...
1.2 Specific Problem Description 11
1.3 Literature Review. I... 14

2 Cartesian Representation 27
2.1 Cartesian Completion Space.I.. 27
2.2 Capabilities and Limitations of the Representation 29
2.3 Obstacles in N-Space 30

3 Heuristic Hi/CT 32
3.1 Definition of Heuristic Hi/CT. 33
3.2 Explanation and Interpretation of Steps 33
3.3 Experiments 37

4 Heuristic H2 44
4.1 Definition of Heuristic H2 44
4.2 Explanation and Interpretation of Steps 45
4.3 Intuitive Explanation of Heuristic H2 51
4.4 Extension to Higher Dimensions 52
4.5 Correctness Sketch. 54

4.6 What Is Different About This Algorithm? 59I
4.7 Complexity. 59

*4.8 Local Rule 64
4.9 Rate of Pruning 65
4.10 Attempts at Increasing Performance. 65

4.11 2D Counterexamples 67

V

I!

5 Experiments and Results 70
5.1 Experimental Objectives 70
5.2 Measures of Performance 70
5.3 Problem Structure/Sources 72
5.4 H2 vs. Priority Dispatching 73
5.5 H2 vs. Priority Dispatching on Problems with Due Dates 83
5.6 Dimensionality Increasing 96

6 Conclusions 99

7 Suggestions for Future Work 102
7.1 Modify Heuristic H2 102
7.2 Develop New Heuristics Modeled On Heuristics H1/CT and H2 . . . 103
7.3 Modify Heuristic HI/CT 105
7.4 Veronoi Approach 105
7.5 Normalize Path Probabilities For Random Sampler And Active Sampler107

* 7.6 Cyclical Schedule Formulation 108
7.7 Representation Transformation 110
7.8 Learning Boolean Functions/Transformations 111

A Free Space Fraction 112

B N-D Cone Fraction Derivation 115

C Notes on Random Sampling 120

D Applying HI/CT to a Problem with Symmetry 127

vi

01 1, 1 1 11 11 1 1

WI ~' &,'a

List of Figures

1.1 Activity On Node (AON) PERT network 3
1.2 AON Series, Parallel and N Subgraphs 5
1.3 Tree Representation of an AON PERT Network 6
1.4 Disjunctive Graph 8
1.5 AOE Pert Network 9
1.6 AOE Series, Parallel and N Subgraphs 10
1.7 Example space associated with a 2 job problem 15
1.8 Solution shown in Gantt Chart form for a 10 job 10 machine problem. 19

2.1 Types of obstacles resulting from different resource constraints 31

3.1 Two spaces which could result when the precedence is set 36
3.2 H1/CT Applied to a 6 job 6 machine problem 39
3.3 Hi/CT Applied to a 6 job 6 machine problem 42
3.4 Pruned 2D Subspaces 43

4.1 Obstacle Selection 47
4.2 Two spaces which could result when the precedence is set 49
4.3 Trajectory Through Pruned Space 50
4.4 Example Space Associated With A Three Job Problem 53
4.5 Two Dimensional Subspaces Associated With A Three Job Problem . 55
4.6 Pruning which results in disjoint regions 56
4.7 Gantt Chart for Correctness Proof 58
4.8 Estimate of number of states of completion remaining as heuristic H2

* proceeds on a 10 job 10 machine problem 66
4.9 Suboptimal Trajectories in 2D Problems 69

5.1 Relative performance under the makespan criterion (page 1 of 2) . . . 76

vii

5.2 Relative perf:ormance under the makespan criterion (page 2 of 2) . . . 77
5.3 Relative performance under the flowtime criterion (page 1 of 2) . . . 78
5.4 Relative performance under the flowtime criterion (page 2 of 2) . . . 79
5.5 Comparison of H2 with Dispatch Rules under the makespan criterion 81
5.6 Comparison of H2 with Dispatch Rules under the flowtime criterion 82
5.7 Relative performance under the max lateness criterion on problems

with due dates (page 1 of 2) 84
5.8 Relative performance under the max lateness criterion on problems

with due dates (page 2 of 2) 85
5.9 Relative performance under the tardiness criterion on problems with

due dates (page 1 of 2) 86
5.10 Relative performance under the tardiness criterion on problems with

due dates (page 2of 2) 87
5.11 Relative performance under the makespan criterion on problems with

due dates (page 1 of 2) 88
5.12 Relative performance under Vie makespan criterion on problems with

* due dates (page 2 of 2) 89
5.13 Relative performance under the flowtime criterion on problems with

due dates (page 1 of 2) 90
5.14 Relative performance under the flowtime criterion on problems with

due dates (page 2 of 2) 91
5.15 Comparison of H2 with Dispatch Rules under the max lateness crite-

rion in problems with due dates 92
5.16 Comparison of H2 with Dispatch Rules under tne tardiness criterion

in problems with due dates 93
5.17 Comparison of H2 with Dispatch Rules under the makespan criterion

in problems with due dates 94
5.18 Comparison of H2 with Dispatch Rules under the flowtime criterion

in problems with due dates 95
5.19 Performance of heuristic H2 as problem dimensionality is increased 98

7.1 Torroidal Completion Space 109

B.1 Three D Cone Example 116
B.2 Base Calculation 118

C.A Normalized Sample Distribution 122
• C.2 Comparison of Distributions Obtained Using the Random Rule, a Nor-

malized Random Rule and an Active Schedule Generator 123
C.3 Joint Distribution Scatter Plot, Schedule Makespan vs Schedule Flow-

time 125

* viii

Lp "I

LIST Oi FIGURES

D.1 H1/CT applied to a 12 job 6 machine problem (makespan criterion) 128
D.2 H1/CT applied to a 12 job 6 machine problem (flowtime criterion) . . 129
D.3 Symmetric 2-D Subspace 131
D.4 H1/CT modified to account for symmetry applied to a 12 job 6 ma-

chine problem (makespan criterion) 133
D.5 H1/CT modified to account for symmetry applied to a 12 job 6 ma-

chine problem (flowtime criterion) 134

- , I IV IIF-lI q

Introduction - Review

Chapter 1

* Two methods of obtaining approximate solutions to the classic General Job-Shop

Scheduling Problem are investigated. The first method is iterative. A sampling of

the solution space is used to decide which of a collection of space pruning constraints

are consistent with "good" schedules. The selected space pruning constraints are

then used to reduce the search space and the sampling is repeated. This approach

can be used CAher to verify whether some set of space pruning constraints can prune

with discrimination or to generate solutions directly.

Schedules can be represented as trajectories through a cartesian space. Under

the objective criteria of Minimum Maximum Lateness a family of "good" schedules

(trajectories) are geometric neighbors (reside within some "tube") in this space. This

second method of generating solutions takes advantage of this adjacency by pruning

the space from the outside in thus converging gradually upon this "tube." On the

average this method significantly outperforms an array of the Priority Dispatch Rules

when the objective criteria is that of Minimum Maximum Lateness . It also compares

favorably with a recent iterative relaxation procedure.

,I1

0,

_1: General Problem Description2

1.1 General Problem Description

One way of representing a superset of the scheduling problems considered in this

thesis is with a PERT/CPM network. This representation will be introduced

and will then be specialized down to the Job-Shop Scheduling problem. Typi-

cal applications are the scheduling of construction projects and research programs.

The term PERT/CPM is an abbreviation for Program Evaluation and Review

Technique/Critical Path Method. This representation was devised by the US Navy

to help plan and expedite the development of the Polaris Missile. A PERT network

is a graphical representation of how the activities of a project are related. Activities

require resources for their processing and can represent either a single event (pour

concrete) or a given operation repeated on a batch of parts (paint these widgets).

In one incarnation, the Activity On Node (AON) variety, the nodes of the graph

correspond to activities while the directed edges correspond to precedence relations.

The usual interpretation of one of these precedence relations is that the activity at

the tail of the directed edge must be completely finished being processed before the

activity at the head can be started. The edge lengths in an AON PERT network

have no significance. Shown in Figure 1.1 is a AON PERT network relating activities

A1 through A7 .

The nodes of the AON PERT network represent activities to be processed.

* These are usually labeled with information specified from the project data and with

information computed from the network. Project data includes, the nature of the

activity, the processing time of the activity (one exact number or some distributional

information usually no more complex than optimistic and pessimistic estimates of

processing time), and the amount, type and cost of (possibly multiple) resources

_0 .,...

1.1: General Problem Description 3

Al A2 A3

DO D1

A5

A4 A6

Figure 1.1: Activity On Node (AON) PERT network

required to process this activity. Note that dummy nodes Do and DI have been

added to the start and to the end of the network. Early Start Times (EST), Late

Start Times (LST) and Slacks are defined and can be computed from the network as

follows. To compute the EST of an activity (the earliest time at which an activity can

be started without violating precedence constraints) assume the dummy start node

is finished at time 0. Then for nodes who's predecessors have all been assigned Early

Start Times set the EST of the node to the max of the EST+(Process Time)'s of all

the predecessor nodes. This will result in assignment of EST to all nodes including

the dummy finish node. To compute the LST's (the latest time at which an activity

can be started without increasing the length of the overall project) set LST=EST of

the finish node, then for nodes who's successors have all been assigned LST's, set the

LST of the node to the minimum of the LST-(Process Time)'s of all the successor

0

1.1: General Problem Description 4

nodes. Note that the nodes are visited in Topological order. An activity's slack is

then defined as the difference LST-EST. This slack indicates the amount of freedom

allowed in scheduling this activity without extending the overall length of the project

or violating precedence constraints. Note that some slacks are dependent.

Note also, if the EST's, LST's and slacks are computed as described above, then

there will be a chain (of width 1 or more) of activities from start to finish which

have slack values equal to 0. This chain or path is the so called Critical Path.

Assuming that infinite resources are available, this Critical Path determines the

overall duration of the project. In order to shorten the project duration one or more

activities along the Critical Path must be shortened. The Critical Path Method

*(CPM) is a tool used to find the most cost effective way to shorten ("Crash") the

Critical Path assuming that there is some time/cost tradeoff for each activity.

Instead of being explicitly represented as activities and precedence relations one

of these networks can be thought to be composed recursively in terms of series,

parallel and N subgraphs [14]. These subgraphs are shown if Figure 1.2. The overall

structure of a network can then be encoded as a tree with Series (S), Parallel (P) and

N (N) nodes with activities as leaves. The tree encoding of the network of Figure 1.1

is shown in Figure 1.3. Note that there is an implied ordering in the branches of the

S and N nodes.

In the previous discussion it was assumed that infinite amounts of the resources

required to process the activities were available at some cost. Specializing this as-

sumption down to finite amounts of each resource gives rise to the class of resource

constrained network problems. In these problems the Critical Path may or may not

d- 'ermine the overall project duration. This is because some activities may have

tt wait for resources to become available. Therefore, instead of allocating cash in a

0 M

1.1:- General Problem Description

Series

Parallel

Figure 1.2: AON Series, Parallel and N Subgraphs

0CM II '

1.1: General Problem Description 6

+N

Al A2 A A6

A5 AT

Figure 1.3: Tree Representation _ f an AON PERT Network

effort to reduce the Critical Path the objective is to find an allocation of the avail-

able resources to activities such that some criteria is optimized (e.g. overall project

duration).

Specialization of the resource constrained network problem to the case where each

activity requires only a unit quantity of one resource gives rise to the Job-Shop type

problem with arbitrary precedence relations (Also, in a Job-Shop Scheduling problem

there is only one unit of each resource available.). Specialization of the problem

further to-require the network to consist of Parallel linear chains of activities results

in the classic Job-Shop Scheduling problem. Each of the chains defines a "job." In

this case the resources are the machines in a "shop." If each of the jobs visits the

machines in the same order then the shop is termed a Flow Shop; if the jobs are free

to visit the machines in any order then the shop is termed a General Shop. In this

1.1: General Problem Description 7

thesis only problems of the General Job-Shop variety will be considered. Note that

specifying a linear order of the activities on each machine fully specifies a solution

to the scheduling problem.

The precedence relations used in the PERT network representation have the

property of transitivity. If activity A. precedes Aj and Aj precedes A then A,

precedes Ah. Explicitly computing the precedences among all nodes in the network

is called the transitive closure. In contrast, reducing the set of precedence relations

to a minimum by eliminating redundant precedence relations is called the transitive

reduction.

Closely related to the PERT network representation for a Job-Shop Scheduling

problem is the Disjunctive Graph representation (Figure 1.4). The directed edges of

the disjunctive graph correspond exactly to the precedence relations of the PERT

network of Figure 1.1. The Disjunctions are unresolved precedence relations, their

orientations are yet to be determined. The disjunctions are typically shown as dotted

lines or as a pair of parallel directed edges each with an opposite orientation. When

taken together, the precedence relations and disjunctions among a set of activities

which all require the same resource form a complete graph. There is either a prece-

dence relation or a disjunction between each pair of activities in this set. For the

network shown, grouping the activities according to resource required results in the

* following sets: {A 1 ,A} , {A 2,As, A7 }, and {A 3, As}

When-the scheduling algorithm which processes this graph is finished, each of the

disjunctions will have been "settled" - one of the two possible precedence relations

will have been chosen. The precedence relations will then form complete graphs on

each set of activities requiring the same resource. Performing a transitive reduction

on the final graph results in a linear chain of precedence relations through each of

s

11: General Problem Description 8

Al A2 A3

A7

Figure 1.4: Disjunctive Graph

1.1: General Problem Description 9

A2

Al A3

A4 A5A6

A6

Figure 1.5: AOE Pert Network

these sets. Thus a linear ordering of activities is specified at each machine. Note that

as the algorithm proceeds, the graph becomes a progressively more ordered partially

ordered set.

There exists a dual formulation of the PERT network termed the AOE (Activity

On Edge) PERT network (Figure 1.5). The directed edges in these networks corre-

spond to activities instead of precedence relations. The nodes correspond to "project

milestones" or the event that the preceding activities are finished being processed.

More care must be taken in formulating the AOE style network than a AON networks

because in some cases dummy activities must be introduced to achieve the desired

precedence relations. In particular, the AOE equivalent of the AON N subgraph

requires such a dummy activity (see Figure 1.6).

B15 1 R

1.1: General Problem Description 10

0 ~ Series

CK 0<1 >0 Parallel

DO N

Figure 1.6: AOE Series, Parallel and N Subgrapha

Rill1

2 SI
1.2: Specific Problem Description 11

1.2 Specific Problem Description

The General Job-Shop scheduling problem is an abstraction of a discrete-parts, batch

or lot production process. Typically, orders exist for a number n of jobs (com-

modities) to be produced, each of which is to be processed on all of m available

machines (processing facilities). In general, each job may take a different path

through the shop. The goal is to specify an ordering for the jobs at each ma-

chine such that both the technological constraints of the jobs are satisfied and a

measure of schedule goodness is maximized. An instance of one of these prob-

lems can be specified using the notation of Rinnooy Kan [73] as the four-tuple

{n, m, Special-Constraints, Objective-Criteria}. In this notation, n is the number

of jobs and m is the number of machines. Special-Constraints such as G (general

flow of jobs through the shop) and d (each job has an arrival date and a due date)

define the problem's structure while Objective-Criteria is the measure of optimality

(e.g. L,.a=_ Minimum Maximum Lateness) used to compare schedules.

It is assumed that only short term detailed scheduling is to be done. The man-

ufacturing facility has a fixed amount of equipment as determined by some method

of long range planning. And that short range aggregate planning has been done by

a system such as MRP resulting in a product mix specification consistent with the

goals and limitations of the facility. MRP (Material Requirement Planning) is an

inventory control system which starts by forecasting end-item demand, then devel-

ops a master production schedule, and then explodes this schedule using a bill of

materials. These gross requirements are then compared to existing inventory levels

*to determine net requirements. This static specification is to be contrasted with the

dynamic case where jobs arrive unpredictably.

0

1.2: Specific Problem Description 12

In addition to this basic scenario, the following limiting restrictions are assumed

to apply. Each job is composed of a sequence of individual activities the partial

ordering of which is specified by precedence relations. Each activity requires a certain

fixed amount of time for its processing and these processing times are sequence

independent. There is no pre-emption of activities from machines (i.e. once an

activity begins being processed its processing continues until completion). Each job

is assumed to have an arrival date and a due date. All machines are independent

and can process only one activity at any given time.

This family of problems has been studied extensively and a variety of types of

algorithms have been developed for it. Many forms of the problem are known to be

* NP-hard [73]. In other words, it is widely believed that no algorithm exists (although

one could theoretically exist) which is capable of solving these or any other NP-hard

problems in an amount of time which is some polynomial function of the size of

the input data. Consequently, exact maethods were developed for relatively small

problems, while heuristic methods were developed for large problems. One thread

which is common to most of these algorithms is that they use tbe addition of a time

ordering or precedence constraint as a method of pruning the solution space. Using

such constraints allows a partial (or complete) solution (schedule) to be represented

as a partially ordered set of activities.

For example, this time ordering is explicit in the case of algorithms which branch

and bound on disjunctions or perform relaxation by interchanging the order of activ-

ities along a Czitical Path. In the case of algorithms which run in a simulation type

environment the time orderings of the activities are fixed in a topological order.

An assumption underlying the use of these precedence constraints is that the sets

of sequences representable as partially ordered sets is rich in the sense that local rules

0%

1.2: Specific Problem Description 13

can make progress toward a solution without the need for excessive backtracking. It

seems that under certain circumstances this is the case while in others it is not, as

evidenced by the narrow success of most algorithms.

Fox and Kempf [341, [35] propose a provably complete language of sequences in

which arbitrary sequencing constraints can be expressed succinctly using the prece-

dence relation >-, the negation operator not combined with the logical connectives

and and or. Actually, a nand or nor connective along with the precedence relation >-

would be sufficient. Fox and Kempf used the language in connection with the offline

generation of alternative "opportunistic" schedules for later use on line. Their objec-

tive was to generate offline sets of schedules which will offer maximum opportunity

to accommodate for uncertainty in the order of parts arrival at an assembly station.

Such a language allows more freedom in the selection and utilization oi constraints

when designing algorithms for sequencing problems.

A common assumption is that the goal is to find a provably "optimal" sequence

or a quantifiably close approximation. This is a narrow view as it focuses only upon

some cost and neglects the other aspects such as robustness; perhaps a family of goo,

schedules could be found such that small variations in shop operation or problem

specification could be accommodated. The constraints that are typically used to

build and describe solutions usually preclude the specification of such families.

In this thesis two heuristics will be developed. The first one (H1/CT) is iterative

and based on Monte Carlo Sampling. Information gained from the generation of

sample schedules is used to prune the search space via some given set of pruning

constraints. Under certain objective criteria, Hi/CT is observed to converge upon

* a family of good schedules. Choosing a schedule from the "middle" of this family

should result in a schedule which is insensitive to small variations in shop conditions

S

4!

1.3: Literature Peview 14

(other reasonably good alternative schedules can be easily reached from this one).

Another use for heuristic Hi/CT is to test whether some set of pruning constraints

is capable of selectively eliminating undesirable schedules from the search space.

Heuristic H2 is a one pass procedure which is tuned to converge upon a region I
of the search space containing a high density of low Minimum Maximum Lateness

schedules. In the chosen representation this region is a "tube" connecting the origin

and the far corner of a cartesian space.

1.3 Literature Review

In order to compare previous work with the two heuristics developed in this thesis

and to describe the various algorithms uniformly, it is now necessary to introduce the

concept of a cartesian completion space. Related to a job shop scheduling problem

is a cartesian space (first introduced by Akers [5] and later used by Hardgrave and

Nemhauser [52]) in which position along an axis corresponds to the degree of com-

pletion of a job. Shown in Figure 1.7 is a two dimensional job space representation

of a two job problem. Each of the coordinate axes corresponds to a "job." Each job

consists of a linear chain of activities and is drawn in the AOE (Activity On Edge)

style. The length of each edge corresponds to the processing time of the associated

activity. Any point along the length of a job defines a state of completion of the job.

A trajectory through this space corresponds to a schedule, whic starts from a state

of zero completion at the origin and goes to a state with all jobs completed at the
far corner.

Thus, any point in the space corresponds to each of the jobs being in a partially

completed state. A trajectory through this space can be mapped directly to a sched-

6A"1

1.9: Literature Review 15

END

-- /

I-d

C -

START
Job.1-

Figure 1.7: Example space associated with a 2 job problem

tule. When a trajectory traverses only one coordinate direction only one job is being

processed. Similarly, when a trajectory is advancing in multiple dimensions the jobs

are being co-processed. The processing time for each piecewise linear segment of

the trajectory can be found by finding the maximum of the projections of it on to

the coordinate axes. Total schedule completion time is then the summation of these

maxima over the piecewise linear segments.

The shaded regions are infeasible states of completion due to resource constraints.

Obstacles include the area up to but not including the lines (2D case) which form

their boundaries. For example, the first activity of Job 2 and the last activity of

0Job 1 require the same resource which is available in quantity 1.

A survey of some of the established methods used to generate solutions for the

0

1.3: Literature Review 16

problem of Job-Shop Scheduling follow. When appropriate, a brief description of

the algorithm in the context of a completion space will be given.

Since the problem is NP-hard [73], research has focused in two general areas,

exact (and usually computationally intense) methods to find "optimal" solutions

to small problems and heuristic (and usually computationally simple) methods to

find approximately optimal solutions to large problems. The heuristics developed

in this thesis are of intermediate complexity and thus fall between the two areas.

Branch and bound methods have traditionally been used to find exact solutions. The

performance of the branch and bound method depends heavily upon the strength of

the lower bound used to estimate the cost of completing a partial solution. If the

bound is exact (not an estimate) then an optimal solution can be found directly. If

the lower bound is inexact then some barren branches will be explored even though

they do not lead to an optimal solution. If the bound used is not a lower bound but

an approximation accurate to some known accuracy, then an approximately optimal

solution (within this known accuracy) can be found. Surveys of categorization and

complexity of algorithms and problems over various objective criteria can be found

in [9], [24], [26], [49], [67], [731 and [77].

Some of the steps of an example branch and bound algorithm can be visualized

in a 2D completion space as follows. Assume the algorithm is to branch and bound

on disjunctions along the current critical path. The first step is to find the critical

path. Start a trajectory at the origin of the space and proceed diagonally (along

a 45 degree line) (ignoring obstacles along the way) or as near to this direction as

possible until the state of total completion is reached. This trajectory corresponds to

the schedule (possibly infeasible) which would result by assuming that there are no

resource limitations and that each activity is scheduled to start as soon as possible

OI.-J

1.3: Literature Review 17

consistent with the given precedence constraints. The second step is to locate the

disjunctions along this critical path. Each intersection of the trajectory with the

previously ignored obstacles corresponds to a disjunction along the critical path.

Next, tentatively "settle" one of the disjunctions (each disjunction corresponds to

an obstacle). This "settling" of a disjunction (addition of a precedence relation) is

equivalent to requiring all subsequent trajectories to detour around the obstacle in

a given direction. A new critical path (trajectory) is then found and the process

repeated. It is usually necessary at some point to backtrack and try some of the

alternative detours.

One of the simplest and still widely used tools to aid a human scheduler is the

*Gantt Chart. This chart is a graphical display of how resources are allocated to activ-

ities over time. This technique is puzzle-like because the scheduler has to rearrange

the boxes representing the processing of various activities by the resources until a

good enough schedule is obtained. Schedule quality reflects the skill and experience

of the scheduler.

Time is represented explicitly along the x-axis and either precedence constraints

within a job or resource limitations are enforced by the non-overlapping of the boxes

depending whether the y-axis corresponds to resources or jobs respectively. The

iman scheduler must take care of the other constraint.

For an example of such a chart where the resource limitations are enforced graph-

icalhy see _Figure 1.8. In this chart each row of boxes (activities) corresponds to

operations scheduled to be done on an individual machine. The numbers in the

boxes are an arbitrary numbering of the activities. Job 1 is composed of activities

1 through 10; job 2 is composed of activities 11 through 20 and so on. The empty

space between boxes is idle time inserted between activities so that the precedence

LM

1.3: Litemture Review 18

relations will not be v: -lated. The schedule shown is one feasible solution for the no-

torious {10, 10, G, Makespan} problem found in [47]. The makespan for this example

solution is 985.

Very small problems can be solved by using brute force to enumerate all the pos-

sible sequences. Slightly larger problems can be solved by enumerating the dominant

members of equivalence classes of sequences. Erschler et al [32] take a "pyramidal"

approach specific to single machine problems. Akers and Friedman [5] discuss how to

reduce the set of schedules using only non-numerical means. Giffler and Thompson

[46] exploit dominance by enumerating all of the members of the set of so called Ac-

tive Schedules. The defining characteristic of an Active Schedule is that no activity

can be re-scheduled to start at an earlier time without forcing some other activity to

start at a later time. The set of all Active Schedules is smaller than the related set of

Non-Delay Schedules. Although the size of the set of schedules is reduced, it is still

not small enough to allow practical enumeration of a moderate {6, 6,, } size problem

(6 jobs each 6 activities long). Hardgrave and Nemhauser [52] show how trajectories

corresponding to the Active Schedules map into the completion state space.

Much effort has been put into the generation and evaluation of priority dispatch-

ing rules [24]. These rules are used to rank the jobs waiting in a queue for processing.

This type of scheme is attractive because only a small amount of locally available

information is needed to make the queueing decisions and changes in the shop or

problem specification have no effect on the partial solution generated so far. These

rules are usually based on some job or queue attribute believed to be relevant to

the generation of good schedules. Some example rules are the Shortest Processing

Time (SPT) rule, the First Come First Served rule, the Least Work in Next Queue

rule, and the Random rule (see Section 5.4 for definitions of these and other rules).!. J_

1.3: Literatury Rf-ic' 19

0 0

00

1.3: Literature Review 20

The average performance of some of the rules, most notably SPT, is better than

the Random rule; however the performance of a particular rule on a given problem

instance is unpredictable.

In addition to being used directly in a running shop, the priority dispatch rules

have been used as the basis of simulation studies. Moore and Wilson [65] and Weeks

and Fryer [851 have evaluated the relative performance of sets of rules. Nugent [66]

evaluated the merits of adding some randomness to the dispatch rules and Bunnag

[15] used computer search to determine what weighted combination of rules gives

good performance for a typical problem. Additionally, much work has been done to

provide simulation environments [20], [31], [711 and [83], and modeling systems [12],

[37] and [381.

Priority dispatching can be mapped into the completion space as follows. Start

a trajectory at the origin and proceed diagonally until the corner of an obstacle is

encountered. Use a dispatch rule to decide which way to detour around the obstacle.

Continue is this fashion until the state of total completion is reached. Following this

procedure generates one member of the class of the so called Non-Delay Schedules. In

other words, if some machine is idle and its queue is not empty, then one activity will

be selected via the dispatch rule and started immediately. This is to be contrasted

with the class of Active Schedules in which it is possible to have a schedule in which

a machine remains idle even though its queue is not empty. The supposition is that

waiting a little time now might enable one to avoid excessive idle time later.

Various randomized searching strategies have been explored. The strategy is

simple, sample schedules are generated and then compared with the best schedule

* -generated so far. Sampling with equal probability from the set of all schedules does

not give good results, consequently efforts in this area have concentrated on biasing
,11

1.3: Literature Review 21

the sampling procedure so as to increase the probability of generating better schedules

(hopefully without excluding the best schedules). One way to bias the procedure is

to sample from the class of non-delay schedules. This is the same type of schedule

as generated by using the priority dispatch rules, and could in fact be generated by

using the Random dispatch rule. Here, as many activities are processed in parallel

as possible until some conflict arises (a queue with more than one element in it).

This conflict is then resolved by choosing at random from among the elements of the

queue. This sampling scheme increases the probability of generating schedules which

have fewer conflicts to resolve.

Another alternative, taken by Giffler and Thompson [47], is to sample from the

set of Active Schedules. In an Active Schedule, an activity's processing may be

delayed even though it and the necessary resources are immediately available. The

activity is delayed in favor of some other job which will become available later.

Another characteristic of Active Schedules is that no activity can be rescheduled

to start at an earlier time without forcing some other activity to start at a later

time. Choosing at random when there is more than one choice again increases the

probability of generating schedules with fewer conflicts to resolve, unfortunately in

numerical problems (as opposed to those with unity processing times) this biasing

does not necessarily work out to advantage. And although given enough samples this

method is guaranteed to come up with the optimal solution, the computational cost

is prohibitive as problem size increases. Also, in most cases, the odds of producing

a superior schedule are greater when sampling from the set of non-delay schedules

than when sampling from the set of Active Schedules.

* Yet another alternative is to bias the sampling based on some quality or measure

thought to be relevant to a good schedule. Toward this end Nugent [66] prioritized

0

1.3: Literature Review 22

the activities in a queue using a dispatch rule and then applied a geometrically

decreasing probability to choosing successive elements in the queue. It was found

that the distributions of schedules obtained via these randomized dispatch rules were

improved from those of purely random selection and a significant fraction of the

samples were better than those for the unrandomized dispatch rule. The conclusion

was that a fixed amount of randomization helps, but that the optimal amount of

randomization varies among problem instances.

A Bayesian approach has been used to estimate the likelihood of obtaining a

better schedule with the next sample. In this approach, some a priori distribution

of schedule attributes is chosen. Then information gained by sampling is used to

* update the assumed distribution. If the assumed distribution is general enough it will

asymptotically converge to the actual distribution. This updated distribution can

be used to estimate the probability of obtaining a better sample than the best found

so far. One of the problems with this type of approach is finding a computationally

tractable a priori distribution. According to Rinnooy Kan [73] this method is only

of academic interest because it depends on asymptotic results and is only applicable

to structured situations.

Some less structured approaches to solution generation (modification) come under

the headings of Relaxation [1], Interchange, Neighborhood Search [56] and Annealing.

In these methods, some (possibly random) change is made in an existing solution.

This produces a new schedule which is in some sense close to (a neighbor of the

original schedule in some space) the initial solution. Perhaps this change is made by

interchanging the order of two activities which lie along the Critical Path of a PERT

* network. The objective function of interest is then evaluated on this new schedule;

if there is an improvement, then the modified schedule is accepted (Relaxation) and

1.3: Literature Review 23

the process is repeated. If the value of the objective function is degraded then the

schedule is accepted (Annealing [55],[64]) with some probability depending upon the

annealing schedule. If the annealing schedule is selected correctly, then the algorithm

will not get stuck in a local minimum.

The relaxation process can be visualized in the completion space by starting

with a trajectory corresponding to any complete feasible schedule. Then, using

a modification rule, jump a portion of the trajectory over one or more obstacles.

Interchanging the order of two activities along a critical path [63] corresponds to

jumping over a single obstacle.

A variety of search techniques have evolved over the years. These methods can be

either exact or heuristic depending the strictness of the bounds used in the various

branching decisions and whether or not one is content with the best schedule found

so far. See [11] for an overview of search strategies. In the Operations Research

literature, search algorithms can be found under the headings of Branch and Bound

and Implicit Enumeration. These searches are usually carried out in either a depth

first mode [10] or beam search mode [39] as complexity of the problem usually pre-

cludes using breadth first mode. These algorithms usually based either on settling

disjunctions along a critical path or on resolving which activity to schedule next

during Active Schedule generation. Some examples of application of the branch and

bound technique can be found in [17], [19], [48].

The main difficulty with these approaches is that it is hard to find a lower bound

which on one hand is strict or tight enough to prune the search space effectively at

an early stage and on the other hand is not too computationally expensive. Conse-

* quently, the majority of work in this area has been in the development of stricter and

more efficient bounds. In the extreme case the computation of the bounds themselves

I&C
7g

0

1.3: Literature Review 24

is NP-hard [58]. Baker [81 studied the tradeoffs of various bounds used in flow-shop

branch-and-bound and elimination algorithms. Brooks [13] used a lower bound as

a decision rule for developing a single solution. Work has also been done using a

relaxed lagrangian transformation of the problem to generate stricter lower bounds

[33]. Picard [70] used a related time dependent traveling salesman problem to com-

pute bounds. The difficulty in obtaining tight lower bounds may in part be due to

choice of type of constraint to add. In general, the overall run time of this type of

algorithm is not predictable.

Many operations researchers have approached the problem from a more theoret-

ical point of view. Usually an optimal or near optimal solution is sought using a

*- simplified model of actual shop conditions. One technique, dynamic programming

used by Schrage and Baker [76] on a one machine problem, recursively decomposes

the problem into subproblems, solves each unique subproblem once, then selectively

recombines the solutions. This technique is limited to small problems. A dynamic

programming approach suitable for two job problems presented in the completion

space can be found in [80]. Here the subproblems correspond to trajectory segments

between the outer corners of the obstacles which can be connected with a straight

line. Lawler [59] used a series parallel decomposition on a single processor problem.

Another typt A' decomposition is hierarchical. Problems are decomposed into differ-

ent levels of some hierarchy (e.g. capacity planning, long range, short range, detailed

0b scheduling [41 and Gershwin et a] [42], [43], [44], [451, have worked in making an inter-

mediate level of a decomposition dynamically adapt to changing (breakdown/repair)

shop conditions. Lipton [60], [61] used a hierarchical approach with rescheduling

while Dempster [28] used a two stage approach.

The dynamic programming approach can be interpreted as a search through a

1.3: Literature Review 25

graph superposed on the completion space. Consider a.scheduling problem in which

all the activities have integer processing times. Then the start and finish times of

each activity must occur at integer times regardless of the schedule. At all other

times a number of the jobs are being co-processed. Then the set of all possible

combinations of start and stop states of activities is included in a regular lattice on

the space at unit spacing. The possible transitions from lattice point to lattice point

are defined by allowing an increment of unity in one or multiple coordinate directions

(no lattice points can exist within an obstacle). This corresponds to processing one

or multiple jobs for one time unit. The dynamic programming problem is to find

the least cost path to each lattice point. This is accomplished by formulating the

cost of the path to a given lattice point in terms of the costs of the paths to other

immediately reachable lattice points which are closer to the origin. Davis [25], [271

used this approach to transform a PERT [86] network problem into a shortest route

problem (with a combinatorial number of cities).

Relatively recently Petri Nets have started being used to model and analyze

scheduling systems [75], [18], [74]. These Nets were originally developed [69], [72]

with the intent of modeling interlocking concurrent computation systems in a time

independent manner. In the Petri Net representation both resource limitations and

sequencing constraints can be treated uniformly, although some modifications need

to be made to represent time considerations. These nets or their associated matrices

can be used to derive certain invariants and characteristics of the system. These nets

are equivalent to Vector Addition Systems. In a Petri Net representation of a Job-

Shop scheduling problem, the vectors correspond to the possible trajectory segments

* in the completion space representation. If the scheduling problem being represented

has only integer processing times, then the vectors being added combine to point to

0

1.3: Literature Review 26

the lattice points defined in the previous paragraph.

An exact polynomial-time (in certain problem characteristics) algorithm has re-

cently been improved upon by Sidney and Steiner [78]. This algorithm is applicable

to the total weighted completion time problem, the total discounted cost problem,

the least-cost fault detection problem, and the jump number problem. In this algo-

rithm, dynamic programming along with a partial-order decomposition allows exact

solution of sequencing problems with worst case complexity n(w+) . Where n is the

number of activities to be scheduled and to is the Dilworth number associated with

the Graph P formed by the n activities (nodes) and precedence relations (edges).

The Dilworth number is defined to be equal to the minimum number of chains needed

to partition the vertices of P. This algorithm increases the number of sequencing

problems (those with a reasonable value of to) that can be solved in practical time;

however this class does not include those of the Job-Shop variety. For example, a

{10, 10,, } problem (10 linear chains of activities each 10 activities long) would be of

complexity 100(10+1). The Dilworth number to is also equal to the dimensionality of

the completion space associated with the problem.

0l

I

0j

Cartesian Representation Chapter 2

In Chapter 2 1 will extend the representation introduced in [6] to provide a frame-

work on which to construct subsequent results. Then, in Chapter 3, I will develop

within this framework an iterative heuristic (Hi/CT) based on Monte Carlo Sam-

pling. Results obtained using heuristic Hl/CT serve to justify the formulation of

heuristic H2. This second heuristic (H2) is presented in detail in Chapter 4. In

Chapter 5 the performance of heuristic H2 will be documented. It's performance

will be tested under various objective criteria in relation to the Priority Dispatch

Rules and in relation to some biased search techniques. In Chapter 6 there will be

conclusions about heuristics Hi/CT and H2, and about the ideas of adjacency of

solutions and the types of constraints used to prune the search spaces.

2.1 Cartesian Completion Space

The idea of using a cartesian completion space to represent both the resource limita-

nrtions and the precedence constraints of s, Ieduling problems was introduced by Akers

[6]. Subsequently, an algorithm was developed for two job (2D space) problems by

27

2.1: Cartesian Completion Space 28

Szwarc [801 and an attempt was made to extend the results to the 3D case. The

ide-% was to first optimally solve each of the individual 2D problems defined on three

orthogonal faces of the 3D space. Then, the individual solutions were to be combined

to yield an optimal trajectory through the 3 space. The problem with this approach

is that only 2 projections are necessary to uniquely describe a trajectory in 3 space.

There is nothing in the formulation which guarantees the consistency of the third

subproblem solution with the other two.

Hardgrave and Nemhauser [52] suggested using a set of extremal trajectories

to define a region of the space within which the optimal solution lies. In the 2D

case, these trajectories are found by starting a pair of trajectories from the origin

* and proceeding "diagonally" through the space. When trajectory 1 encounters an

obstacle it always branches in coordinate direction 1. When trajectory 2 encounters

an obstacle it always branches in coordinate direction 2. These two trajectories

define a "cone" shaped region with the apex at the origin. This procedure can then

be repeated starting from the state of total completion and working backwards. The

optimal solution then lies within the intersection of these two regions.

This procedure is well defined for the 2D case, but is unmanageable for higher

dimensional problems. In the 2D case, the boundaries of the regions are defined by

easily generated trajectories while i-. the higher dimensional cases the regions are

defined by n - 1 dimensional hyper-surfaces. In Appendix 1 is the derivation of the

volume fraction of the space enclosed by such a generalized "cone." The bottom line

is that even though the amount of space which remains to be searched is greatly

reduced, the complexity of the remaining space is still formidable.

.1
- J

2.2: Capabilities and Limitations of the Representation 29

2.2 Capabilities and Limitations of the Repre-

sentation

The completion state space incorporates both the resource constraints and the prece-

dence constraints of the Job-Shop Scheduling problem uniformly. And although

efficient results can be obtained in 2D problems, its usefulness in more complex

problems is to aid intuition and qualitative reasoning.

One of the limitations of this state space is that time is not explicitly represented.

This makes it difficult to merge into the space time based constraints such as arrival

dates, due dates and time specific availability of equipment. In order to utilize this

* -type of constraint, some processing of the space needs to be done such as finding

the minimum cost path to each interesting point in the space thereby establishing

a unique time value there. More generally, such a value can be established for any

path dependent function such as one which includes the effect of sequence dependent

set-up times.

For the constraints which are represented (precedence and resource limitations)

the space is a true state space. Each point in the space corresponds uniquely to the

degrees of completion of the various jobs. Therefore, all of the techniques applicable

to such a formulation can be used. For example, any function with a unique value

for some state of completion can be immediately defined at each point in the space.

An example of this would be in-process inventory costs.

When an arbitrary configuration of precedence relations is allowed, some corners

of the space are truncated. This is because the partial ordering of activities defined

by the precedence relations excludes certain states of completion from being feasible.

SThe number of lines emanating from the leading corner of an obstacle corresponds

2.3: Obstacles in N-Space 30

to the number of alternative activities which could be scheduled at this point. For

example, consider a trajectory encountering the leading corner of an obstacle in a

two dimensional problem. At this point, the trajectory can branch in one of the

two possible directions around the obstacle. Each of these directions corresponds to

choosing one of the two activities in a queue.

2.3 Obstacles in N-Space

In the classic Job-Shop Scheduling Problem, it is assumed that resource availability is

limited to one machine of each type. A resource which is available in quantity j gives

rise to a basic obstacle of dimensionality j + 1 in the space. In a two dimensional

(two job) problem with unit resource availability the resulting obstacles are two

dimensional rectangles (See the top left box of Figure 2.1). In a three dimensional

(three job) problem with unit resource availability the obstacles are defined as the

union of individual 2D obstacles (found on the 2D faces of the 3 space) which have

been projected through the remaining third dimension thus forming rectangular bars

(See the top center box of Figure 2.1). In general, basic j + 1 dimensional obstacles

defined in the unique j+1 dimensional subspaces are projected through the remaining

n - (j + 1) dimensions to form the obstacles.

4

f2.3: Obstacles in N-Space 31

Number (n) of activities requiring a given resource

n=2 n=3 n=4 e .

2-Cube

~ 8-Cube

* 4-Cube

Figure 2.1: Types of obstacles resulting from different resource constraints

I

IS
06

0

Heuristic H1/CT

Chapter 3

*In this Chapter I will present heuristic H1/CT. This heuristic is built upon Monte

Carlo sampling (see Appendix C). Based on a set of samples taken, the search space

is pruned such that undesirable schedules are eliminated thereby yielding a more

favorable distribution for subsequent sampling. This heuristic has three uses. The

first use is to generate a single solution. This is accomplished by keeping the best

schedule found among all the samples taken. The second use is to prune down the

search space thus leaving a reduced problem with more desirable properties. If the

size of the resultant space is sufficiently small, then it may be possible to employ an

exact method to search it. Alternatively, choosing some schedule from the middle of

the remaining space should yield a robust schedule. Presumably, other schedules of

good quality are near the chosen one. Therefore, if the chosen schedule gets slightly

off track, then it is likely that it's quality will not degrade drastically. And the third

use is to test whether some set of constraints is capable of pruning the space effectively

(hence the /CT in the name for Cconstraint Tester). If the set of constraints used is

appropriate for the problem, then the distributions of schedule quality seen during

32

0

3.1: Definition of Heuristic HI/CT 33

successive iterations should improve. If the distributions do not improve, then it is

probably not worthwhile pursuing the use of the given set of constraints. Thus one

could avoid, for example, the frustration of developing a branching indicator and a
lower bound for a branch and bound algorithm based on this set of constraints which
is unlikely to perform well.

3.1 Definition of Heuristic Hi/CT

This heuristic is defined as follows:

Step 1. Generate a collection of pruning constraints.

Step 2. Generate k new sample schedules.

Step 3. Pick the I best samples from all samples generated.

Step 4. Apply as many of the pruning constraints as possible without removing space

containing the I best samples.

Step 5. Repeat Steps 2,3,4 for a fixed number of iterations.

3.2 Explanation and Interpretation of Steps

Steps 1 through 4 will now explained in more detail.

Step 1. The constraints used here are in one to one correspondence with the

set of 2D obstacles residing on the 2D faces of the cartesian space. Every trajectory

(schedule) in this space detours one of two ways around each obstacle. The con-

straints to be imposed are of the following form: all subsequent trajectories (sched-

ules) shall detour this way around a certain obstacle. This is equivalent to settling

a disjunction.

0

3.2: Ezplanation and Interpretation of Steps 34

Of course it is possible to use other constraints, but they must meet certain re-

quirements. First of all, it must be possible to determine whether a given constraint is

consistent with some set of sample schedules. Otherwise, Step 4 can not be executed.

Second, the technique used to generate sample schedules must be able to function

when an arbitrary (but technologically consistent) subset of the constraints is im-

posed (Techn-logically consistent meaning that some feasible schedule exists within

the pruned space). This is necessary to insure that the sample schedule generator

will not get stuck in a dead end or trap (petri-net terminology).

Step 2. Here the schedules will be generated using a random queueing heuristic

in the context of a simulation of a Job-Shop. Equal priorities are assigned to all

* activities queued at a machine and one is chosen at random. In the completion space

this is equivalent to starting a trajectory at the origin, traversing diagonally until

some obstacle is encountered, then choosing at random which way to detour around

it. Here, the number of schedules generated k is typically 100.

One might possibly consider other sampling schemes such as biasing the random

priority dispatch rule towards one of the other dispatch rules. Alternatively, one

might sample from the set of Active Schedules or some biased version thereof.

Step 3. One must decide upon a measure of schedule optimality. Here, the two

measures considered are makespan and flowtime. Choosing the I (typically 10) best

schedules is simply a matter of selecting the schedules with the best values of the

optimality criterion. As it turns out, the choice of optimality criterion has a profound

effect on the convergence of this heuristic.

Step 4. For each of the I best schedules found, a binary string was generated with

one digit for each of the obstacles. A "0" digit implies detouring one way around the

associated obstacle, and a "1" digit implies detouring the other way. These binary AI

3.2: Eiplanation and Interpretation of Steps 35

strings were then compared. If the ith digits were the same across the ten binary

strings, then all ten of the I best schedules detoured the same way around the given

obstacle, and subsequent schedules were required to detour around the given obstacle

the same way.

Technically, it is necessary to insist upon total agreement among the ith digits of

the strings to guarantee that the pruned space contains feasible schedules. However,

many experiments were performed in which only 9/10the agreement was required,

all of which retained feasible schedules.

Some results obtained using heuristic H1/CT serve as a motivation for the way

heuristic H2 is implemented. The following experiments were designed to show that

*_ a family of good schedules are geometric neighbors in the completion space represen-

tation. For each schedule, there is a corresponding trajectory through the space, and

there exists a "tube" connecting the origin to the far corner within which the density

of good schedules is relatively high. Consequently, heuristic H2 has been designed

to converge upon such a "tube" full of good schedules.

The addition of a precedence relation to a problem specification corresponds

to the removal of a "comer" of the completion space as shown in Figure 3.1. The

removed comer contains states of completion which become technologically infeasible

when the precedence constraint is added.

A set of precedence relations added to a problem can be interpreted as the spec-

ification of an n-dimensional "tube" as follows. In each of the () 2D subspaces of

the n job problem (form a unique 2D space from each unique pair of jobs) delete

the corners corresponding to the relevant precedence relations added. The unpruned

region in each of the (1) 2D spaces is the projection of the tube (nD) on to the 2D

space.

1

3.2: Ezpanation and Interpretation of Step. 38

End

A2f

Start AIL

End End

Str AL-> A2 Start

* Figure 3.1: Two spaces which could result when the precedence is set

111 % 1 11 1 111W % 11 II III 111I

S.: rp-metMI

3.3: Experimentr 37

3.3 Experiments

A number of experiments were performed using heuristic H1/CT to determine whether

or not the addition of precedence constraints would prune the space effectively under

the optimality criteria of makespan and flowtime. There is one precedence constraint

in the constraint set for each pair of activities which require the same resource for

processing.

The experiment is set up as follows: First a set of schedules is generated using

the Random priority dispatch rule in an event based Job Shop simulation. For these

experiments the number of sample schedules generated per iteration was 100. Next,

the makespan is computed for each of these 100 sample schedules. They are then

sorted by increasing value of makespan (for plotting purposes). The best 10 schedules

(those with minimal values of makespan) were then selected. Precedence relations

which were common to all 10 schedules were then used to prune the space. The

sampling scheme was then repeated within the pruned space lumping the 10 best

samples in with the new samples.

The distributions of schedule makespans (obtained using Random priority dis-

patching) for the original problem and for the pruned versions of it are displayed

using quantile plots. In these plots a separate curve is formed for each set of 100

samples taken. The value of the objective function for each member of the set is

plotted versus its position in the sorted data set. The quantile is closely related to

the percentile. If the value of the objective function is z at the 30th quantile then

30% of the samples have objective function values < z. Results were obtained for a

* {6, 6, G, } problem [47] using the objective criteria of makespan and flowtime. Three

curves are plotted in Figure 3.2.

B1 I km'

3.3: &E21rimentu 38

...................0 of 90 Precedence Relaions Added

......52 of 90 Added
- .60of 90 Added

so

70

65

0 10 20 3 0 5 0 70 80 0 100
Quantiles

Figure 3.2: Hi/CT Applied to a 6 job 6 machine problem

Im
Bom0I 2 1,11l

3.3: Ezperiments 39

The first (top) curve represents a random sampling before any additional prece-

dence constraints have been added to the problem. The second curve represents a

random sampling after the precedence constraints common to the best 10 of the first

100 samples have been used to prune the space. And the third curve represents a

random sampling after the precedence constraints common to the best 10 schedules

of the second sample set have also been added.

The distributions indicate that a class of good schedules have certain precedence

relations in common for this {6,6, G, Makespan) problem. This suggests that an

algorithm which successively reduced the search space by adding selected precedence

relations could successfully prune regions of the search space characteristic to unde-

sirable schedules while keeping regions favorable to good schedules.

This shows that trajectories corresponding to a group of good schedules under

the makespan criterion lie near one another in the associated nD completion space.

This can be seen as follows. Consider any 2D subspace of the space: some of the

corners of this 2D space will have been deleted as a result of the precedence relations

added leaving a relatively narrow connected region from origin to end. Intersecting

the projections of these regions would result in a nD tube which connects the origin

to the state of total completion of all jobs (end). All of the schedules in the pruned

problem lie within this tube. Note that there will be obstacles adjacent to and

intersecting portions of the tube. Shown in Figure 3.4 are the 2D spaces associated

with the {6, 6, G, Makespan} problem. The borders of the non-deleted space are

outlined with dotted lines. The origin of each subspace is in the lower left, and the

projections of the 10 best trajectories upon which the the last pruning operation was

*based are shown as solid lines.

Heuristic Hi/CT was applied to 50 {10,10,G, Makespan} problems in order to

3.3: E.rperiments 40

test it's performance relative to Monte-Carlo sampling. The best solution obtained

by Hi/CT throughout all of the iterations was compared to the best solution obtained

by Monte-Carlo sampling. There were 100 samples taken during each of 5 iterations

of Hi/CT for a total of .500 samples, and there were 500 samples taken in the Monte-

Carlo approach. The average improvement over the Monte-Carlo approach for the

50 problems was 1.0%. If this experiment was repeated on a similar 50 problems,

then the average improvement would fall with 95% confidence into the intervai 0.3%

to 1.7%.

Figure 3.3 shows the results of a repeat of the experiment on the {6, 6, G, I prob-

lem but under the flowtime criterion. Results were quite different for this case. The

* precedence relations common to the 10 best sample schedules pruned the space rather

indiscriminately. This situation is improved only slightly with the next iteration and

the distribution would have been more favorable if no pruning had been done. This

suggests that the type of constraint used (adding precedence relations) to prune the

search space is not appropriate for this case. In other words, the orientation of a

group of precedence relations is insufficient to characterize a set of lesser flowtime

schedules (Even though the precedence relations added were consistent with the 10

best flowtime schedules found). That is, the pruning that was done during the first

iteration decreased the probability of generating good schedules during the subse-

quent iteration. This suggests that both good and bad schedules were eliminated

as a result of the pruning. Therefore, an algorithm which successively reduces the

search space by adding selected precedence relations would be unlikely to succeed as

the reduced space would include only a small fraction of good schedules.

Whether or not heuristic Hi/CT converges depends heavily upon the spatial dis-

tribution of good schedule trajectories through the space. As was seen under the

0A

M.: Experiments .41

.330

S320 0 of 90 Precedence Relatic-is Added
51 .. Sof 90Added
60 of 90 Added

310-

-/J

280

2505

0 10*: 20 30- 40 5 0 70 80

'-' r,.'-'

Figur 3.:+/TApidt o ahn rbe

3.3: Experimcnts 42

6

* Figure 3.4: Pruned 2D Subspaces

%..

3.3: E.rperiments 43

inakespan criterion, a high density of good schedules was found to lie within a tube

connecting the origin to the state of total completion in the cartesian space. Such

a tube can be specified by a set of precedence relations. The spatial distribution

of good flowtime schedules could not be captured (characterized) by a set of prece-

dence relations. Certain problem structures may influence the spatial distribution of

schedule trajectories a predictable manner. See Appendix D for an example where

the effects of and strategies to compensate for symmetry introduced into the problem

structure are shown.

III Fit ir F M IN

0ZR ;'

. '

Heuristic H2

Chapter 4

4 Based on the results of Chapter 3 a heuristic (H2) was developed for specifying

precedence constraints so as to converge upon a region of the completion space con-

taining a high density of "good" schedules under the objective criterion of Minimum

Maximum Lateness. When each job has the same arrival date and the same due date

this criterion is equivalent to the makespan criterion.

4.1 Definition of Heuristic H2

The heuristic is defined as follows:

Step 1. Generate a collection of the obstacles (disjunctions).

Step 2. Update the Early Start Times and the Late Start Times of each activity.

Step 3. Select an obstacle for deletion.

Step 4. Delete the selected obstacle (resolve the selected disjunction).

Step 5. Repeat Steps 2,3,4 until no obstacles remain.

44

1 E

4.2: E xplanation and Interpretation of Steps 45

4.2 Explanation and Interpretation of Steps

Steps I through 4 will now be explained both in ter.ns of disjunctions and in terms

of obstacles.

Step 1. Each obstacle in the space corresponds to a possible conflict over a scarce

resource. In the classic Job-Shop Scheduling problem each activity requires a single

type of machine for it's processing and there is only one of each type of machine

available. In order to generate a collection of the obstacles, find all pairs of activities

which require the same machine yet are in different jobs. Each pair also corresponds

to a disjunction (an unresolved precedence relation between the elements of the pair).

Step 2. An activity's Early Start Time is the earliest possible time at which

the processing of an activity can be started without violating job arrival times or

the precedence relations between activities. These times are computed assuming that

unlimited resources are available. An activity's Early Start Time is the maximum of

the Early Start Time plus processing time of the activity's immediate predecessors

(i.e. the Early Finish Times of the immediate predecessors) and the activity's arrival

date (if it has one). To find an activity's Late Start Time first find the minimum

Late Start Time of the given activity's immediate successors. Then subtract the

given activity's processing time from the minimum of the previous result and the

given activity's due date.

Step 3. For each obstacle compute the following two quantities from the pair of

activities (Ai, A) which gave rise to the obstacle. The two quantities are the slacks

between the two activities for their two possible orderings. If activity Ai precedes .4.

then the slack is the Late Start Time of .4, iinus the Early Finish Time of .4,. If

activity A. precedes .4, then the slack is the Late Start Time of A, minus the Early

0

4. - Explanation and Interpretation of Sftps 46

Finish Time of A,. The maximum of these two slacks is the Max-Slack associated

with the obstacle while the minimum is the Min-Slack. Select the obstacle with the

smallest value of Min-Slack. If there is a tie in Min-Slack value then break the tie

on the basis of largest Max-Slack.

Figure 4.1a shows what this selection process looks like in a two dimensional

example space. Figure 4.1a shows a number of trajectories used in the obstacle

selection process. These trajectories were obtained by ignoring all but one obstacle

and finding the longer of two possible trajectories around this remaining obstacle.

This process was then repeated on each of the obstacles to yield the trajectories

shown. (The length of a trajectory is determined by summing the maxima of the

projections of it's piecewise linear segments on to the axes.) Then the obstacle

associated with the longest of these paths is selected for deletion. The longest path

is easily determined by visual inspection to be the one with the minimum amount of

co-processing (diagonal segments).

Step 4. The --longest" path selected in Step 3 is actually a lower bound on

the schedule length (makespan) for trajectories (schedules) which detour around the

same side of the obstacle as the longest path. In all of these schedules activity .42 is

processed before activity .41. The space is pruned such that these --longer" schedules

can no longer be generated. This pruning is accomplished by requiring that activity

.41 always be processed before activity .42. The pruned region of the space shown in

the lowerleft of Figure 4.2 corresponds to states which become infeasible as a result

of requiring that .41 precede .4., The lower right of Figure 4.2 shows how the space

would have been pruned if we had required that .4, precede A1 . These two possible

pruning operations correspond to the two possible ways of "'settling" a disjunct ion.

Figure 4.1b shows the space divided into regions associated with the selected

6.

4.2: Explanation and Interpretation of Steps 47

4'0

A D'

START

Fiur 4.:OstceSeeto

4I'
I jj4'

4.2: Explanation and !nterprdation of Steps 48

End

Start Al

End End

Start A l - 2StartA2l

Figure 4.2: Two spaces which could result when the precedence is set

ll~l i 1I
0 101001

1.2: Ezplanation and fnierpretotion of Steps 49

obstacle. Any trajectory which passes through regions A and then C must be at

least as long as the longest path computed above. Those trajectories which also pass

through region B are even longer. Note that there is also a simple upper bound on

length" for paths which traverse through the union of regions A, B, and C. This

is simply the path along the outer boundary of the space. The closer the obstacle

under consideration is to the outer limits of the space, the less difference there is

between these simple upper and lower bounds on the path length. In the limiting

case of an obstacle wedged into the corner the lower bound is equal to the upper

bound.

Consider a trajectory which starts out in region A, then enters region D and

finally enters region C. Regardless of %liat obstacles were previously ignored in D,

the path segment through D can be no longer than that of a vertical segment along

the inner boundary of A from the crossover point to the corner of the obstacle added

to a horizontal segment along the lower boundary of C from the corner of the obstacle

to the crossover point in C. Therefore, it is likely that deleting the corner of the

space including the obstacle and a portion of region B, which consequently limits

trajectories to those passing through D, will result in the pruning of an undesirable

set of schedules.

The above mentioned bounds and approximate results get weaker when applied

* to obstacles residing in the inner regions of the space. Therefore in order to maximize

the effectiveness of the bounds used, obstacles at the outskirts are deleted first then

the space is gradually pruned from the outside inward. This way, the obstacles under

consideration will lie near the outskirts of the space. Figure 4.3 shows the obstacle-

less space resulting from repeated application of the selection and deletion process.

Also shown is one of a set of possible trajectories through the space.

4.2: Explanation and Interpretation of Steps 50

ND

START

Figure 4.3: Trajectory Through Pruned Space

This bound or branching indicator has been used by other researchers (e.g. P*

r731 pg. 123) as a node selection criterion for a branch and bound algorithm. In this

application, the obstacle which both lies on the critical path and has the minimum

value of P" is chosen to branch upon (In H2 an obstacle is selected from the set of

all undeleted obstacles, not from only those on the critical path.). It (P*) has been

found to be unsatisfactory for this purpose because it is a relatively weak branching

indicator and because the resultant search tree can be very deep (m(Qn) See section

4.7). I believe this weakness is caused by limiting the selection process to obstacles

along the critical path. Because the critical path (trajectory) lies near the body

* diagonal of the space and not near the outer edges, this weakness is not surprising.

Instead of using this as a branching indicator this bound is used by H2 as a selection

rule. It has the effect of choosing obstacles which lie near the outer regions of the

I I

4..3: Intuitive Explanation of Heuristic H2 51

space. These obstacles are deleted first, then those close to the outer edges are

deleted. The overall effect is to slowly converge about a tube shaped region of the

space.

4.3 Intuitive Explanation of Heuristic H2

Heuristic H2 looks for what seems to be the most detrimental decision possible - (this

decision would either lengthen the critical path or maximally reduce slack somewhere

in the network of activities). It then makes the decision complimentary to this most

detrimental one. In other words, it avoids the worst possible decision at any given

point.

Making such a decision leaves open more options for future decisions. This hap-

pens two ways. First, in general there is more slack left in the network than would

be if the worst possible decision was made. Second, in general this decision does

not decrease the number of subsequent decisions to be made (transitive closure of

the decisions precedence relations added] so far usually does not restrict any of the

remaining decisions). So, in some sense, small decisions are made. The graphical

interpretation is this: Usually when a 2D obstacle is deleted along with its appro-

priate corner of the space, only that one particular obstacle is deleted. Note, that

when the obstacle and corner are deleted only a relatively small portion of the total

space is remove([.

By always working near the outer fringes of the space, the relatively simple bound

(which the decisions are based upon) are improved. The outer edges of the space are

involved in subsequent calculations which would not be the case, if for example, the

first obstacle considered for deletion was near the center of the space.

P 1 1 ' 1 1 J l
Mil

4.4: Extension to Higher Dimensions 52

4.4 Extension to Higher Dimensions

The above heuristic, although presented in two dimensions, can easily be applied

to higher dimensionality problems. Figure 4.4 shows an example three dimensional.

three job space. This corresponds to a "3x3 Job Shop" problem. Only two obstacles

are shown for clarity. The bar shaped obstacle results from two activities (the first

activity of Job 2 and the first activity of Job 3) which require the same resource.

The cross shaped one results from three activities in different jobs each of which

requires the same resource. This obstacle is formed by the intersection of three

rectangular bar segments thereby forming a three dimensional cross. In the classic

Job-Shop Scheduling problem (each job visits each machine once) there are three

of these cross shaped obstacles nested together with the protruding ends trimmed

to form the space. These obstacles occupy a large fraction of the volume of the

space. This density issue is dealt with in detail in Appendix A. An unobstructed

region of the three dimensional space corresponds to a situation in which all three

jobs can be co-processed. A unobstructed plane formed between the bar shaped

extensions of neighboring obstacles corresponds to a situation in which two jobs can

be co-processed. And a line corresponds corresponds to a situation in which only

one job can be processed. These unobstructed regions, planes and lines are available

for traversal by trajectories.

Instead of working directly in this three dimensional space, the heuristic is ap-

plied to the I(') = 3 unique two dimensional subspaces (non-redundant faces of the

three cube each of which corresponds to a unique pair of jobs). These are shown

in Figure 4.5. Each of the 2D obstacles is considered separately as in the previous

2D case, but when the bounds are computed the entire 3D space is used with the

4.4: Extension to Higher Dimensions 53

Job2

Jobi l

Figure 4.4: Example Space Associated With A Three Job Problemj

. orr1-tn4'es Sketch 54

capacity constraints relaxed on all machines. The only relevant constraints at this

point are those from the single obstacle component in the 2 space and the outer

edges of the 3D space.

In the three dimensional example, it was assumed that only one of each machine

type was available. This gave rise to the 3D cross type of obstacle. If one assumes

that two of each machine type is available then the obstacle consists of only the

center of the cross (see Figure 2.1). In this case. the heuristic as described above

could not be applied and another similar heuristic which uses a three dimensional

base case would be required.

4.5 Correctness Sketch

Does following the steps of this heuristic guarantee that some technologically feasible

schedule will be generated' The answer is yes, and the question can be rephrased

negatively in two different ways. One. when the space is pruned can the pruning occur

such that the resulting space is composed of disjoint regions? Two, (equivalently) is

it possible to generate a directed cycle of precedence relations?

Shown in Figure 4.6 is how successive pruning operations could result in the

separation of the space into disjoint regions. First the upper left is deleted along

with the lower right hand obstacle. Then the lower right is deleted along with the

upper left hand obstacle. This resultant space is composed of the small upper right

and lower left regions with no possible path between them and consequently no .
possible feasible schedule.

To shlowv that this cannot happen. we resort to a Gantt chart representation of

the problem. Here the task is to show that a directed cycle is not generated as a

L ...

.1.5: Correctness Sketch 55

(TOP)

Job 1 -'

(Front) -~(Right)

Job I to Job 3 a

Figure 4.5: Two Dimensional Subspaces Associated With A Three Job Problem

4.5: Correctness Sketch 56

End

RemovedLI

Start

Figure 4.6:. Pruning which results in disjoint regions

I)
.4.5: Correctness Sketch 5 7

result of the addition of some precedence relation. In order to generate a directed

cycle by the addition of a single precedence relation, there must already exist a

linear sequence of two or more activities (ordering of some activity with respect to

itself is not considered). Such a sequence is shown in Figure 4.7. Activity A,1 is

constrained to precede the (possibly zero-length) sequence of activities Aj the last

of which precedes activity .42.

It is assumed that activities A, and A2 are members of different jobs and that we

are seeking to order these two activities by the addition of a precedence relation. The

current relationship of the two activities (A1 >- 42) was assumed to be established

implicitly via transitivity) at some previous step of the algorithm. In order to decide

whether A, should precede .42 or vice versa the "slack" between these two operations

is computed for the two possible configurations (See Section 4.1). The precedence

relation is then added in the orientation corresponding to the larger slack. The top

of Figure 4.7 indicates the slack calculation for the case of activity A, preceding

activity A2 . This is simply the Late Start Time of activity A2 minus the Early

Finish Time of activity .41. These times are annotated in the figure.

The slack for the alternative configuration (A2 >- .41) can be computed as Late

Start Time of A1 minus the Early Finish Time of .42. This can be expressed

in terms of the precious calculation as shown in Figure 4.7b. The Early Finish

Time of activity .42 is equal to the Early Finish Time of activity A, plus the sum

of the processing times of the intervening activities Aj plus the processing time of

activity -42. Similarly, the Late Start Time of activity A, is equal to the Late

Start Time of activity .42 minus the sum of the processing times of the intervening

activities .4, minus the processing time of activity .41. Subtracting the Early Finish

Time of activity .42 from the Late Start Time of activity A, is strictly less than

) 1I

4,.5: Correctness Sketch 58

SLACK-IF(AI,A2) =LST(A2) - EFT(AI)

~... F1
EFT(AI) LST(A2)

LST(AI)

SLACK-IF(A2,Al) =[LST(A2) - SU.M(P(Aj)) - P(A1)J-

[EFT(A1) + SUM(P(Aj)) + P(A2)

EFT(A2)

= LST(A2) - EFT(Al) - fP(Al) + P(A2) + SUM(P(Aj))

= SLACK-IF(AI,A2) - [P(AI) + P(A2) + SUM(P(Aj))

Figure 4.7: Gantt Chart for Correctness Proof

4.6: What s Different About This Algorithm ? 59

the slack computed for the acyclic orientation of the precedence.

4.6 What Is Different About This Algorithm?

Heuristic H2 is most closely related to the algorithms which can be interpreted in

the completion space. These algorithms can be grouped into two classes. The first

class includes those which start a trajectory at the origin and subsequently delete

the space adjacent to the evolving trajectory (e.g. priority dispatching). The second

class includes those which generate the tube by pruning out large regions of the space

adjacent to the current critical trajectory (as found by the Critical Path Method)(e.g.

* branching and bounding on disjunctions along the critical path). In these two classes,

the early pruning operations are major ones. In other words, relatively large numbers

of alternatives are precluded early on. If these decisions were not correct, then the

algorithm must either backtrack or fail to find an optimum.

The algorithm developed in this thesis falls into a third class. In this class the

tube is gradually converged upon by pruning away small pieces from the outer edges

of the space. Witb this approach the first decisions are minor ones precluding only

relatively small numbers of well bounded alternatives. Thus it is likely that the

pruning decisions made early on by heuristic H2 are correct ones. The outside in

approach just described is not attractive for use in branch and bound algorithms

because the large number of decisions nade corresponds to a relatively deep search

t ree.

-0

4.7: Complexity 60

4.7 Complexity

One drawback is that heuristic H2 has to explicitl) deal with every 2D obstacle in

every subspace. This results in the majority of cpu time being expended iterating

through the coflection of obstacles.

The steps of heuristic H2 as defined in Section 4.1 follow:

Step 1. Generate a collection of the obstacles (disjunctions).

Step 2. Update the Early Start Times and the Late Start Times of each activity.

Step 3. Select an obstacle for deletion.

Step 4. Delete the selected obstacle (resolve the selected disjunction).

Step 5. Repeat Steps 2,3,4 until no obstacles remain.

For a complexity analysis assume that we have an in, m, G, Lnm.} problem. Here

there are n jobs each of which is a linear chain of m activities. Each job must visit

each machine exactly once. The nm activities can be collected into groups of size n

(one group for each resource) in O(nm) time. This O(nm) time is an estimate (in

terms of input problem size) of how many cpu cycles (or memory cells) are required

to compute the desired result. Typically, constant factors and terms which grow

relatively slowly with input problem size are omitted from such estimates. Then ()

obstacles are generated from each of these groups. Step 1 is only performed once

and takes (nm + m O(nr2m) time.

Step 2 involves updating the slacks in a PERT network graph. This can be done in

O(Vertices + Edge.) [2] time. There are O(nm)Vertices and O(nm)Edges to start

and O(n2 m)Edges added as the algorithm proceeds (one for each deleted obstacle.)

4.7: Complezity 61

Therefore step 2 takes 0(2nm + n 2 m) = O(n2m) time. Step 3 is merely adding a

new edge to the PERT network graph which takes constant time.

Steps 2 and 3 are repeated once for each obstacle resulting in 0(n 4m 2) for an

overall estimate of run time. If one assumes that the problem is "square" (i.e. n = m)

then the time complexity is 0(a-) where there are a activities to be scheduled. From

the point of view of the number of obstacles o = m() the complexity is O(o 2).

Preliminary experiments indicated that much cpu time was being expended trying

to update sections of the PERT network graph that were not affected by the latest

edge added. To alleviate this, a quick slack updating procedure was developed. In

this procedure, the effects of adding a new edge were propagated only as far as

necessary. This procedure could take longer in the worst case but on average takes

less time than the procedure which always processes the entire graph. Experience

shows that problems involving a couple of hundred activities can be processed in a

few minutes on a Symbolics 3650 Lisp Machine equipped with 2 Megabytes of core

memory.

The quick slack update procedure is as follows. Starting from the tip of the prece-

dence relation just added propagate Early Start Times forward by giving preference

to the activities which will be most affected. This effects an implicit topological sort-

ing because no activity can be affected more than the largest change in Early Start

Times and guarantees that the updating is performed in a correct order. Propagat-

ing large effects first supersedes smaller propagated effects, therefore each node will

be -,sited a maximum of one time.

Then repeat the procedure propagating Late Start Times starting from the tail of

the precedence relation added in a backwards direction toward the beginning of the

graph. The activities being processed are inserted into a "heap" [2] using the change

4..
jr ,N"

I

4.7: Complezity 62

in the activity's slack as a "key." Using a heap allows an element to be inserted

and allows the element with the maimum "key" to be removed in O(log(n)) time

if there are n elements in the "heap."

To put the complexity of H2 into perspective, consider the complexity of some

of the existing algorithms. First consider the prospect of complete enumeration.

Assuming that we are trying to solve a (n, m, G, I problem, there is a simple upper

bound on the number of distinct possible sequences. This is given by (n!)n' . This

bound could be attained by structuring the problem such that all the jobs visit the

machines in the same order. Then the n jobs could be ordered independently at each

of the m machines.

Second consider a Branch and Bound algorithm which branches on disjunctions.

In an {n, m, G, I problem, each of the m activities in a job requires a unique machine

for processing. There are () disjunctions associated with each of the m machines

for a total of m () disjunctions. This is an upper bound on the maximum depth

of the Branch and Bound search tree. The search tree is binary because any given

disjunction can be resolved in two ways. The computation of the lower bound used

in branching decisions range in complexity from trivial to NP-hard.

Third, consider a Branch and Bound algorithm based on the generation of Active

Schedules. In this case, the depth of the search tree is bounded by the maximum

number of conflicts which can occur on all machines. This maximum depth is nm and

reflects the possibility of all the n jobs conflicting at each of the m machines. Again

computation of the lower the bounds used branching decisions range in complexity

from trivial to NP-hard.

Forth, consider a Dynamic Programming approach. For a single machine problem

({n, 1, G, }) a convenient representation to use is the n dimensional completion space.

$

4.7: Complezity 63

One dimension represents each job with the lengths of the axes corresponding to

the processing times of the various jobs. Since there is only one machine available

for processing, trajectories are constrained to follow the edges of the space. The

Dynamic Programming formulation is to find the optimal cost trajectory to each of

the vertices in terms of the immediate predecessor vertices. In this case there are 2"

possible vertices to visit.

When there is more than one type of machine available, the situation is more

complex. We no longer have a lattice of vertices defining the endpoints of the tra-

jectory segments. This is because the trajectories are no longer constrained 0- the

edges of but may traverse diagonally through regions of the space. There is a way

around this though. If we are willing to constrain the problem to have only integer

processing times, then each of the n coordinate axes can be divided at unit intervals.

This divides the space up into unit n cubes. All trajectory segments are guaranteed

to have as endpoints the vertices of these n cubes. There are approximately mp + 1

vertices along the length of any given axis; p vertices for each activity of approxi-

mate processing time p and one point at the end. The total number of vertices is

approximated by (mp + 1)".

Fifth, consider a Priority Dispatch Rule being used in a simulation environment.

Here, similar to the Branching and Bounding on Active Schedules, there is an upper

bound on the maximum number of conflicts which can occur. This bound is inn.

Associated with each of the conflict resolutions is the computation of the Dispatch

Rule. This ranges from a trivial constant (e.g. a due date) to looking ahead to the

next queue to possibly some function of all of the activities. In general relatively

*simple indicators are used. Priority Dispatching could be thought of as a depth first

search of the search tree associated with Branching and Bounding based on Non

0

4-.: Local Rule 64

Delay Schedules. Perhaps the Lower Bounds developed for the Branch and Bound

algorithms could be adapted to form more sophisticated Dispatching Rules.

Similar to Priority Dispatching, Heuristic H2 can be thought of as a depth first

search of the search tree associated Branching and Bounding on disjunctions. In this

case the maximum depth is attained and is given by m(;).

4.8 Local Rule

Heuristic H2 is a local rule in the sense that only a relatively small amount of

information (slack) is used in deciding where and how the space will be pruned. In

some cases, the use of a local rule can be proved to lead to an optimal solution; but in

the case of heuristic H2 some simple counterexamples show that this is not the case

(see Section 4.11). This is no surprise considering the problem is NP-Hard. What is

surprising is how well it works given the nature of the "bounds" (local rule) used to

decide where and how to prune the space. There exist a spectrum of lower bounds

developed over the years ranging from ones as simple as the rule used in H2 to ones

which are NP-hard.

Adams et al [11 used bounds (which were NP-hard) in an iterative procedure

involving some redoing of earlier decisions. First, all machines but one were ignored

and the activities scheduled on the remaining machine. Then, leaving the order-

ing of these scheduled activities intact, activities requiring the next machine were

scheduled and so on. Periodically, activities scheduled on one machine were freed up

and then rescheduled as a method of relaxation to accommodate for factors which

were not accounted for earlier. Heuristic H2 produced a superior schedule on the

{10, 10, G, Makespan} problem found in [47] even though the local rule used by H2

4.9: Rate of Pruning 65

was trivial in comparison to the lower bound used by Adams.

4.9 Rate of Pruning

In Figure 4.8 is shown an estimate of the number of feasible states of completion

within the cartesian space as heuristic H2 proceeds. This particular graph was from

the {10, 10, G, Makespan} problem found in [471. For this problem there are 450

disjunctions to be settled. If one were to define 11 points along each of the coordinate

axes (one at the beginning and end of each activity), then a lattice of points (states of

completion of activities) would be defined by choosing one coordinate (point) along

each axis. The graph is an estimate of the number of such lattice points left in the

cartesian space as the 450 disjunctions are successively settled. This estimate was

obtained using the numbering scheme in [76]. Notice that the number of remaining

lattice points is almost a constant fraction of the number from the previous iteration.

4.10 Attempts at Increasing Performance

A number of alternative obstacle selection rules for heuristic H2 were evaluated before

arriving at the final selection rule. Presently, each obstacle Oi has two values associ-

ated with it (see Section 4.2 Step 3). These values correspond to what slack would

exist between the two activities for the two possible orientations of the precedence

relation between them. The larger of these two slacks is defined as Max-Slack while

the smaller one is Min-Slack. The obstacle with the smallest associted Min-Slack

is chosen for deletion first. If there is a tie then the obstacle with the largest value

of Max-Slack is chosen. Using the smaller of Max-Slack seems to make only a minor

N d V~

4.10: Attempts at Increasing Performance 66

CD 10-5

,~10.0

cc

w 9.5

0 .

7 .5

0 50 100 150 200 250 300 350 4M0 450

Number of Precedence Relations Added

Figure 4.8: Estimate of number of states of completion remaining as heuristic H2

proceeds on a 10 job 10 machine problem

91

Low

4-.11: 2D Counterezamples 67

difference, possibly improving the solution obtained in certain problem instances.

Some of the other (fruitless) alternative obstacle selection schemes tried are:

* Instead of breaking ties with the largest value of Max-Slack, ties were tem-

porarily ignored. This delaying of resolution of the most critical obstacles was

found to be detrimental to performance.

* Choose the obstacle with the smallest Max-Slack.

* Choose the obstacle with the largest Max-Slack.

a Choose the obstacle with the largest Min-Slack.

One question which arises in problems of this sort is; is the solution locally

optimal? Even though the global optimum may not have been obtained it is desirable

that the solution be at least locally optimal, otherwise some simple modification

should be used to improve it.

In order to test the local optimality of the solutions obtained, a downhill only

relaxation routine was applied to some sample solutions. The relaxation is effected

by interchanging two adjacent activities along the critical path. In the test, the

interchange is accepted if the reordering results in a lower value of the objective

function, otherwise a reordering of another pair activities is tried. Applying this

procedure to some trial solutions resulted in little or no improvement indicating that

the initial solutions found by heuristic H2 were very near to or at a local optimum.

4.11 2D Counterexamples

When solving {2, m, G, Makespan} problems, heuristic H2 almost always finds an op-

timal solution. Several hundred randomly generated {2, 5, G, Makespan} problems
E

4.11: 2D Counterezamples 68

were tested before one was found on which heuristic H2 failed to find the optimal so-

lution. The optimal solution which was used for comparison was found via exhaustive

enumeration. Figure 4.9 shows two problem instances in which the heuristic failed

to find an optimal trajectory. The numbers correspond to the order in which the

obstacles were selected for deletion. Obstacles number 1, 2, and 3 have already been

deleted and which way to delete number 4 is under consideration. The two alter-

native trajectories shown in each case are rated with equal value by the decision

procedure and the suboptimal one was chosen by chance. In both cases the subopti-

mal performance was due to ignoring the presence of the last obstacle when deciding

how to delete the next to last one.

;0

p-

.%

S

4.11: 2D Counterexamples 6

00

0v

02

r.

Experiments and Results

Chapter 5

* 5.1 Experimental Objectives

The objective of this chapter is to show how heuristic H2 performs as certain prop-

erties of the test problems are varied. Heuristic H2 will be benchmarked against an

array of the priority dispatch rules and some biased search methods. These experi-

ments are designed to show:

" Performance relative to the priority dispatch rules,

* Performance as problem dimensionality increases, and

*, I Performance over various objective criteria.

5.2 Measures of Performance

From the work of A. H. G. Rinnooy Kan the following collection of criteria form a

reasonably rich set of regular measures which can be used (possibly in combination)AJ
as measures of schedule goodness.

70

1,11 91I
up%" .t

0 NL

5.2: Measures of Performance 71

A regular measure f has the following property expressed in terms of Ci the

completion time of Jobi.

If

cl,...,,,) <f(C,....,C)(5.D)

then

Ci < Ci' (5.2)

for at least one i.

These criteria are based on arrival times, completion times and due dates. They

can be combined to reflect a variety of shop operating costs [15], [73]. These six are:

C,,,.. Max Completion Time or Makespan

Z Ci Sum Of Completion Times or Flowtime

" E wiCi Weighted Sum Of Completion Times

" L,,a Max Lateness

e E Ti Sum Of Tardiness

9 E wiTi Weighted Sum Of Tardiness

Lateness is the difference between a job's due date and it's completion time. The

tardiness is defined as the maximum of 0 and the lateness. These criteria do not

A. include costs incurred for the early completion of jobs.

An additional criterion which would be useful would be some measure of robust-

ness. This would measure cost sensitivity of the schedule either to minor variations in

problem data (some activity takes longer to process, etc.) or to major changes such

as shop reconfiguration (some machine breaks down). This would probably lead to

I IN

5.3: Problem Structure/Sources 72

schedule specifications which included alternative contingency sequences. This has

yet to be quantified.

5.3 Problem Structure/Sources

The test problems used in these benchmarking experiments were either obtained

from the literature [47], derived from such a problem by interchanging some of the

activities, or by random means. The problems were either of the flow type or the

general type. In flow type problems, each job visits each machine once and all jobs

visit the machines in the same order. In the cartesian space representation, all the

* obstacles lie along the diagonals. In the general problem, again each job visits each

machine once, but any job can visit the machines in any order. In the cartesian space

representation, the obstacles are scattered about - one in each row and one in each

column.

A {10, 10, G, Makespan} problem was chosen from the literature as a basic test

case [47]. This problem involves 10 jobs each 10 activities long and 10 different

machines. It is an instance of the General Job Shop Scheduling Problem and a value

exists for the optimal makespan solution for it. This optimal makespan is 930 time

units. Additional problems were derived from this one by interchanging the order

of some activities within a job. From the same source came a {6, 6, G, Makespan}

problem with similar attributes. The optimal makespan for this problem is 55 time

units.

Arrival dates and due dates were added to the problems to generate additional

problems. The arrival date for the first job was set at 0, for the second at 10% of

% the average job duration, the third at 20% and so on. The due dates were similarly

.7 NI

SIZ-ll.I U M

5.4: H2 vs. Priority Dispatching 73

skewed, and the average due date was set such that all the solution techniques had

difficulty avoiding tardiness.

For problems that were generated totally randomly, either the flow or general

constraints were imposed, a machine ordering was randomly chosen, and processing

times were independently generated from a flat probability distribution. In [47]

is specified a problem parameter R, the ratio of the longest to shortest (integer)

processing time. They used values of 2, 3, 5, 8, 10 and 15. When the ratio is 1 (equal

processing times for all activities), the distribution of objective function value over

the schedules is approximately Gaussian. As the parameter R is increased, additional

peaks appear in the distribution which makes the problem more unpredictable. In the

problems generated here, relatively large values of R (e.g. 10) were used. Processing

times were assumed to be flatly distributed within the range of 100 to 1000 time

units.

5.4 H2 vs. Priority Dispatching

The heuristic was benchmarked against an array of the traditional priority dispatch

rules. Each rule was used to generate a single solution for comparison against the

solution obtained by heuristic H2. Fifty {10, 10, Gen, } problems were generated as

described above with all jobs arriving simultaneously. The priority rules used for

comparison were:

* Earliest Due Date (DDATE) - The job with the earliest due date is chosen.

r Expected Work in Next Queue (XWINQ) - Look ahead to the next queue

i, ° 4that a job will visit. Add the job's processing time to the sum of the processing

times of the jobs in the next queue. Choose the job with the smallest value.

V

*% % . % %C Y~1LV---\.~

Y

5.4: H2 vs. Priority Dispatching 74

" Fewest Jobs in Next Queue (NINQ) - Look ahead to the next queue that

a job will visit. Choose the job headed to the shortest next queue.

" Fewest Operations Remaining (FOPNR) - Choose the job with the small-

est number of operations remaining until completion.

" First Come First Served (FCFS) - Choose the job which arrived in the

queue earliest.

" Least Slack First (SLACK) - For each job subtract from the job's due date

the current time and the processing time of the rest of the job. This is the

slack. Choose the job with the least slack.

" Least Slack Per Operation (SOPN) - For each job, divide the slack by the

number of operations remaining. Choose the job with the least of these values.

" Least Work in Next Queue (WINQ) - For each job, sum up the processing

times of the jobs in the next queue which the job is going to visit. Choose the

job with the minimum value.

" Least Work Remaining (LWRK) - Choose the job with the least total

amount of processing left to be done.

" Modified Due Date (MDD) - For each job, compute max(1,(due date -

current time)/total processing time of the rest of the job). Choose the job with

the smallest such value.

* Process Time + (Slack / Operations Remaining) (PEOPN)

* Process Time + Expected Work in Next Queue (PWQP)

mo

5.4: H2 vs. Priority Dispatching 75

" Process Time + Work Remaining (PWRK)

" Process Time / Operations Remaining (POPNR)

" Process Time Difference J, J+1 (PSP)

" Shortest Processing Time (SPT)

" (Slack * Process Time) / Work Remaining (MSPON)

" Work in Next Queue / Next Operation Process Time (PWQP)

Detailed descriptions of these rules and their relative merits can be found in [24].

Ties were broken using the First Come First Served rule.

Shown in Figures 5.1 and 5.2 are plots of the relative performance of the heuristic

a ,d dispatch rules under the makespan optimality criterion. Shown in Figures 5.3

and 5.4 is relative performance under the flowtime criterion.

Each individual plot shows the performance of the rule listed in the title position

relative to the best solutions found by all of the rules taken together. Problem number

increases along the x axis. For each of the fifty problems, the relative difference

between the solution found by the rule under consideration and the best solution

found for the problem was plotted along the y axis. If a given rule always found the

best solution then its curve would lie along the x axis. The plots for each rule all

use the same y scale to facilitate visual comparison. Next to each title are a mean

and a standard deviation summarizing the performance of that rule.

As can be seen from the plots, heuristic H2 outperforms the array of priority

[•dispatch rules under the criterion of makespan. Under the criterion of flowtime the
least work remaining rule is consistently best. Heuristic H2 is "tuned" to converge

upon a tube shaped region in the cartesian space. It does this by gradually pruning

[$.

5.-4: H2 vs. Priority Dispatching 78

*55l1 this Rule ~son - fl Rl

*- v- ~all Best overall Best

r P-, A ",
Protl " 1e.an 2.76 bey 4.26 Proble.l Mean 6.99 Dev 6.32
H 2. MlODIFIRED DUE DATE

-Overall Best - ra i wt

Probleul Mean 32.3 3ev 14.5 Proble "I Mean 12.8 Dev 9.8*

PtKIE$S T 1," REMAINING PW.ESS TIhE DIFFERENCE J, J~l

owsnltlla uto MonI This RUSS
OveIS O.er... .. . t

ProIlem mhean j2.2 Dev 6.62 Proble"w lean 16.0 3ev I.!

LEAST SLI'V PEP OPEP EYICTIED UOPV IN HEN, 0

a-o Thist mule RkSOR - This fouo
Overall Soot 0 *"?1 4 tlt

' A V1VA~J ''M.
Probleil Mlem 15.$ Dev 10.7 Probl@P4 Mean 32.6 Dev 11.4

FELEST Ilf HEXT "IE LEAST UOR REMINING

fSI- This mule F&hn - this Rule

-- Overall lost -overall Best

Probl"g Mhean 10.3 Dev S. Probl,8 Mean 10.3 Dev *."

(CW.JLEST r DATE ST COME rST SEPq

* Figure 5.1: Relative performance under the makespan criterion (page 1 of 2)

ZOZZI.

5.4: ff2 vs. Priority Dispatching 77

--- Overall 64stOvrl"S

Problems Mlean 6.77 Dow, 6. 39 Probltifi Mehan 10.2 Dov. 6.63
__________T__-_ORREAIIM PROC T * (SLACK -"OPERREMINING)

probtAe Me.an 15.6 boy 19.8 Prilblaft4 Ma .4 0VS
P*OCESS T VE'CTED tMORV I"NEXT 0 PROCESS TOVER OPERREANG

ov -~ eral pst - -Ovetrall lest

Problortl Mean 10. 7 Dev 6.32 Poln en1.9 Dv96

SHORTEST PROCESSING TIMlE FEWEST OPER REMAINING

* Figure 5.2: Relative performance under the makespan criterion (page 2 of 2)

5.4: H2 vs. Priority Dispatching 78

-Ovijil 6W'- OV*.T Bes

Prot.loms Metan 24.? Dev 12.2 Problqp8 Tiean 22.9 Dev 7.68
H Z WDIFIEl DUE DATE

Flo I This shile FlI- thi Rule

- .Oueall gost 1 . - - . Ooerel 6est

Pro.t-long Teen 6.12 14-- 7.11 Problois Me an 16. 2 Do,, 7.214

PCESS T * iP,' PEtMAI#l4ti PW.0EIS TIME DIFFEPftKE J, *T+l

Pl io; kule 10 T1I fssull

- -- Olt Sort - vealBst

LEAtT SLAO PER OPEP EXECTED hJOi IN NEXT~nT. tO' 54 D' 29Pole4 fos1. .1.
'Flo I Thiul Floe I this mul"*--Over al IIbest - Overall Best

P-.I @.aS Noon 1:-4 Do" -1. 32 Problo-4i TMeor, ..,07 Do,, 5.893
FEIEST Ill 14E:.T OAJI* LEAS~T UOM VEmiAItiOt

110 trot Tills lot This Rule

-- Overall Wit --- OVe1rall best

Protilesq Metan 29. 0 Div 9. $0 Problem@ Mean 29.0 Dev 9. 99
EAPL EST VIA DATE PSY COME FST SERT43

*Figure 5.3: Relative performance under the flowtime criterion (page 1 of?2)

5.4: H2 vs. Priority Dispatching 79

[Flo I this Rule Flo f this ftis

*"a I Beai st --- Overall Best

Problemsg Mehan 23.2 kv 7.63 Probltftie afun 33.3 Dev 11.6
kS<LACK a PPROC T) WORCK REMAINIG PROC T (SLACK I, OPER REMAININGC)

11 IThis *Ulf Flo. I this Rule
OertIiest ovrst) lost

Probt"p~ Mean t1 4 0ev 9.4 Problemll Mean 19.7 Dev 7.71
PROC[SS T * EPECTED lIKV IN EXT 0 POESS T OV.ER OPER RE MINtC.

&#ra I ". Overall kSst

Problems Metan 3e9 D ev 12.7 Problem$ Meani t2.5 0ev S.
LEAST SLACK. FIRtST LEAST WMORI IN NEXT 0

FoIthis Mulie Fie t * this ftle
* ~*i~t---Overall lotOF kIot

Problem@ Mean 13. 1 Do 0.20 Problem#l Mean 10.9 pov 9. 34
514017(5 PROCESSING TMtE FEWEST OPEl REMAINING

* Figure 5.4: Relative performance under the flowtime criterion (page 2 of 2)

RN

EMJ
EM1

6 70 " , N 6

5.4: H2 vs. Priority Dispatching 80

the outer regions of the space until a tube containing a single Early Start Time

schedule remains. This method is relatively robust, because as the final tube shape

is approached, there is a high density of low makespan schedules contained within

the tube. This is not the case under the flowtime criterion. A high density of low

flowtime schedules does not exist within such a tube. This accounts for the way

heuristic H2 performs under the flowtime criterion.

Shown in Figures 5.5 and 5.6 is a statistical reduction performed on the exper-

imental results which were shown in Figures 5.1 through 5.4. Each horizontal bar

represents a 95% confidence interval for the expected average difference in objective

function value over 50 {10, 10, Gen, } problems. In these problems, all jobs arrive

at the shop simultaneously. The heuristic and the dispatch rules were each used to

generate a single solution to each problem. A random dispatching rule was run 500

times on each problem and the best values of makespan and flowtime were saved.

In general, the schedule which had the best makespan was not the same one as had

the best flowtime. For this reason, the random dispatching rule has an advantage

over the rules which generate only one solution. Additionally, an active schedule

generator was run 500 times on each problem and the best values of makespan and

flowtime were saved.

As can be seen from the plots, the heuristic outperforms the dispatch rules under

the criterion of makespan and comes close the the best makespans found by the

randomized search technique. Under the criterion of flowtime, the rules which are

based on amount of work remaining seem to do well.

5.4: ff2 us. Priority Dispatching 81

20

H2-PCFS I~

H2-DDATE ~
H2-FOPNR

H2-SPT

H2-LWRK -I-

H2-NINQ -I-

H2-WINQ-$

H2-SLACK I4

H2-XWINQ - -

H2-SOPN- -

H2-POPNR-I*

H2.PXWQ --

H2-PSP-- --

H2-PWRK

H2-PSOPN---

H2-MSOPN 4-

H2-Mj)D -- 9

H2-RAND-4-

-0.25 -0.20 -0.15 -0.10 -0.05 -0.00 0.05
9S% Confidence Intervals (Makespan Criterion)

Figure 5.5: Comparison of H2 with Dispatch Rules under the makespan criterion

110 i

109

5.4: H2 vs. Priority Dispatching 82

20

H2-FCFS

H2-DDATE

H2-FOPNR - -

H2-SPT 4-

H2-LWRK

H2-NINQ --

H2-WINQ -4--

H2-SLACK --

H2- -NQ -

H2-SOPN I

H2-POPNR I

H2-PXWQ !

,-PSP -----

H2-PWRK

H2-PSOPN
a

H2-MSOPN

H2-MDD

H2-RAND -4-
p_ _

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20
95% Confidence Intervals (Flowtime Criterion)

Figure 5.6: Comparison of H2 with Dispatch Rules under the flowtime criterion

0•

0v

5.5: H2 vs. Priority Dispatching on Problems with Due Dates 83

5.5 H2 vs. Priority Dispatching on Problems

with Due Dates

Another similar set of problems were explored. In these problems, arrival dates and

due dates were imposed such that each subsequent job arrived 20% later than and

was due 20% later than the previous job. Jobs were 10 tasks long with processing

times chosen from a flat distribution in the range from 100 - 1000. The first job

arrived at time 0, the second at time 1000, the third at time 2000 and so on. Shown

in Figures 5.7 through 5.14 is the relative performance of heuristic H2, the priority

dispatch rules, and two search strategies under the optimality criteria of max lateness,

tardiness, makespan, and flowtime.

Figures 5.15 through 5.18 show statistical reductions of the results of the exper-

imental data. Each horizontal bar represents a 95% confidence interval for the ex-

pected average difference in objective function value over 50 {10, 10, (Gen,Due-Date), }

problems. In these test problems, heuristic H2 outperforms all of the dispatch rules

and the two random searching strategies under the criterion of minimum maximum

lateness (L,,). Heuristic H2 performs well above average under the two criteria of

tardiness and makespan, and performs above average under the flowtime criterion.
V

5.6 Dimensionality Increasing

O This experiment is designed to show how the performance of heuristic H2 varies with

increasing problem size. This comparison would be easy to make if optimal solutions

to all of the problems existed. For small problems an active schedule generation

scheme [461 is used to exhaustively search for an optimal solution against which to

ufo l 1l to

5.6: Dimensionality Increasing 84

A L e.hiS 'u 1 I t IS Rult.

- - v a11
1

"st - - o
e
rall lest

to A

t m ar.ns 8.603 Dev 1.69 Problqtl Mean 3.78 rs*v 3.67

1.R.this Rule L Ronm ths uitl

Overal l it - - - I Obri s BeSt

',Prca lons r14; 19.7 De 11.8 Problem l Mea 1.5 Dq'.o 8.

IC.ACY. , Ppo T) -/ &AW IEM IMIMC PRO T * (SLACK // O1ER " IHIltMnq)

iL F~ hlJ NO*l L Ralhis ItU11.6 D N N 83

F Fr 4 1e .8 oo 23.? 1)4,. iI.e Probltn| Moon 24,4 Dtr', 11.3
$i.S F T :PECTED O IN NEXT 0 PROCESS T OVER Z A t\ JEMfIrP _ _ _ _ _ _

"L AW This ItUll Ll Ma this QI*~l

-- - * " alIts ovral 45

P'role, Mean 13.7 Dcv 7.47 Probtiril mean 9 Dav 101
LES tq.8 c4:r CDK FIRST LEAST WO I" NEXT 0

--- Overalltes- at ov eral st

Fobleml mean 22.7 D v 1.9 ProbleftI Mean 26.9 Dev 138.I'IFE~ FigureSIW T M EETDPRPM14f

Figure .5.7: Relative performance under the max lateness criterion on problems with

due dates (page 1 of 2)

P,%%

S U-. . 1 .. , ' W ., ,. -*' - -.

5.6: Dirnersionality Increasing 85

* - ov.erall **St -- Overall "St

probipl~e Mean 23.3 1 v 4. 74 Problem%$ Mean 24.4 Dqej 13. 0
ACT1Y~$C)4DMODIFIED DMA DATE

1. ma fl il Rul This BUt*

ProbtePi8 Mlean 26. 5 Deii 12.9 Problem* Mean 21. D ev 19.6
P9IEESS T LJMOK REMAINING PROCESS__TIME_______________j,_jet

L Rm this auto 111 Wie

Overait Ia

5.:reblaem% pefmnea u1der the 9ax rlatenes crteio on prolem wit$
Su ae (page 2ut ofi 2)l

O5alWtoeaIIls

Prbot en 99Dv 07 rb~lMa 2. o 3

FE*rI 0rocELATm ~~mm

Fiue58 eaie efrac ne hemxltns.rtrino rbeswt

du aes(ae f2

5.6: Dimensuionalityj Increaising 8

lad Th uis mule 414r4 I t utle

*"erall test overall fst

ladThsRue frd TsOualet*

Probqie,l meen 1s.8 Dew.r 102 ProbI Mlean' 11.9 Di 5. 70
,S'4JVS a PROCT) /' R MAfIMING MW__T_#_________-________________

lard Thi Au15*~lt [Vr*' thi 61 O~1* -- -. "veall pnest overall post

F rs-bI aP.8 new 1S.2 DeOr 6.07 Problpe Mlewn 14.7 Dev C.1I
F- Ks T C. E:PCTED LJD'a III HEXT 0 PPWCESS T OVEP 0PEP PCIIlirG

larthi R11 ule Ord. Tis NvI

ses 1 OeralI Best

Prc'tle,, Mea 18.9 Ogi, 10.4 Pvoblefte Meew 18.0 DOI. 6.36
LEAST SLACA FIPST LEAST UM1 Ill HEXT 0

lard ph 15 111 Rui Olrd thIis Rule

- .overall Btst- Overall Ibest

Frobtlr mlean i0.6 Dev 6.33 Problehl Mewn 12.5 Dev 7.19

'*S'IEST PROCESSIMG TIM ~ FCt(T OPKP PEHRIIfC

* Figure 5.9: Relative performance under the tardiness criterion on problems with due

dates (page 1 of 2)

5.6: Dimensionality Incr asing 87

rd thS i le r I Ort$hIs RjI

S- -* Oveal post Overall Wt

Problems Memn 24.0 Dov 6.79 Problems Mean 17.6 Dev 9.82
FCTIVE-SCED MIODIFIED WA DATE

I reh IS Rule larTis spite

Problemi Mehan 10.5 t~v 6.06 Problem$ Mean 15.1 Dey 6."8
PROCESS T * WUC PEmINIG, PIOCESS TIl DIFFEEJMCE .,)*I

re this bule I-Ord Ito bile
overall Best overall Vast

Problem* l han 17.6 3ev 9.07 Problefte Mlean 11.4 D4v 7.4

LEAST SLJCO' PEP CJPEP EXPECTED UM9l' IMn t::T 0

I Od .this Rule I are ti SyRle,

OveToll Best liverall eest

Problefe mean 10.3 Dev 6.67 Problems Ma I1.0 Derr 5.42

FEW'ST IN NEXT OtLE LEAST AIC WErNGf

Figure 5.10: Relative performance under the tardiness criterion on problems with

due dates (page 2 of 2)

Se

5.6: Dimensionality Increasing 88

OverS aleas O'i l ast

A - t~i -- i --fi ~

Problems8 mean 12.6 e 7. 315rbesMal .21Vr ."

H 2- RANDOMeitk

VSA or FO ~T UOS1K MI INGV POCE * SLS V / OPER P£~th"I~

011, to This null Mk f this Rule

overa- I writ ovral et

LFh1I .7ETDLM INAC li: 55 LNEST 106K OIN REMXV 0

Ove-barall moit Overall kit

PVC't*A Mlean 57.0 Dw to0.4 Problem#l meian 1.1 rev Is.5I

SWTESY PW.ESSIMG TIME FEWEST OPER REMAINING

*Figure 5.11: Relative performance under the makespan criterion on problems with

due dates (page I of 2)

Mil

5.6: Dimensionality Increasing 8

ove a I O.a) Best oeal9s

ProbI.,kl Mlean 14.8 o 6.28 Problems Mean 10. Dow 6. 25 Bs
ACT IJE--C94DMOIEDIX AT

son~~~ this Rule ko hi tl

--- *overall most oealss

Probluems Mlea 27.89 Di" 12.9 Problef Mean 14. 7 Dew 9.82
PPOCESS, t WOR UQs.fEtAMNG PCESS TIME DIFFEPEPcE .. .#Ii

so tis hU?* thisR Rule

* -Oerel Iat 0"161u1il Bst

Probles Mean 23.1 Dow It. 4 Problitml Mele. 384 Dow It3.4
LEAST SLVrV PER OPER EXPECTED LJOPV IhN EXT 0

tRhi W1 NkSPA this Rule

overell lost overall S455

Pr'obitnt Mean 15.0 Div 9.88 Problem$I Mean ".7 Dov 15.5
FEWEST I"N EXT OUEI.E LEAST UOAI PVM3NmIiC

Figure 5.12: Relative performance under the makespan criterion on problems with

* due dates (page 2 of 2)

0

5.6: Dimensionality Increasing 90

nit I this bilt f10 I tis Rule

0V0.htl~'Al ret~,~tt st

I-QI

Probiesq Miean 13.2 bey 9.48 ProbloftI Mean S.4 Do 2.67

pie0 this bstl FlI - this bite

Ovrl Sl - - . vrl ss

Froblte4 mean 22.3 Day 12.2 Problo$ Mlean 16. 7 D41V B.S3
.9.ACIV e PRIX Ti - UORK PEMbIMIi% PtO T o (SLACK /,, OPER PEUAINNG)

5k tthis 11104 tot - this buit

ow a I I fvltSat ove- ~rall sit

Prv~ttl no an 14. 1 DV4 9.07 Pfcgbleio nean 2.3 be. o'. 165
POXESS T E .,PCTED L M 1 PIi E:< 0 PPIXESS T OMEIR OPtP PEMlIiIC

rio I ' his faie ie t - This bitle
overall lost -ovralt 8055

~~~Y-'~~.P1 Vr~'lIkAi A.AI

Pre).p.I Mlean 22.7 bilP 12. 3 ProblIoi Mehan 13.8 be.. 7.91
LEA15T7 SACK SIVS? LEAST W"~i I" PICKY 0

FloO this bitt rlie t - this bIe

A k

Probtivi Mean 14. 5 Day 9. 11 Problons Mean 11.6 Do'. 7.605
SeWTEST PWOESSIMG TIME FEMEST OP!R KMtIflINC

Figure .5.13: Relative performance under the flowtime criterion on problems with

due dates (page 1 of 2)

6g 1 1 1 1 1 1 11 ! 11 1 11 1



5.6: Dimensionality Increasing 91

I.

.~~~~~~~~Problep.I Fien 19.2 L .9 / Prlel ren23 2J

__ I TI4EI-.CIl OZI3FIED OL DA TE

F-I this bile Fil t is AultI. 
- - -• Overall Belt - - - Overll kilt

,A/ 4V NfA fi~

Proll Mea 10.7 Do% 7.52 Probll RMe n 2. 3 ev 12.6
PAOCESS 7 * I VE -r 1r4ING POCESS TIUE DIFFRErCE J, J l

,* I - this Ault F this Ault
- verall best - - I Overll IBest

Prtlill flean 21.3 Dev 7.31 Problitl Mlean 15.3 3ev 18.6

L£A,? S4.'rC PEP COP E.XPECTD IJt IN nEXT 0

Flo I this Wife Flo Ithis bile

e - - OVell Best I - - iefll est

Prolblerl Mleoa 14.3 De 1.3 Problems Mean 11.3 3ev 6.26

FE.EST IN HEXT OLEA LEAST WORK ,EMPININC

Figure 5.14: Relative performance under the flowtime criterion on problems with

due dates (page 2 of 2)

I0N



5.6: Dimesionality Increasing 92

20

H2-FCFS - -

H2-DDATE - -

H2-FOPNR i-

H2-SPT - -

H2-LWRK -- 4--

H2.NINQ + *

H2.WfrJQ --

H2-SLACK -

112-XWINQ ----

H2-SOPN +

H2-POPNR -4.-

H2-PXWQ -- -

H2-PSP ---

H2-PWRX -4--

H2-PSOPN-I

H2-MSOPN - -

H2-MDD ---

H2-Active Schedule 4

142-RAND

-0.90 .0.80 0.70 .610 -. 0 .0 -0.3 -0.20 -0.10 -0.0 -0.10
95% Confidence Intervals (Max Lateness)

Figure 5.15: Comparison of H12 with Dispatch Rules under the max lateness criterion

in problems with due dates

111 11SS5 ,1II X

1 1 1 10 ,1111 IRI0A III



5.6: Dimensionality Increasing 93

20

H2-FCFS

H2-DDATE

H2-FOPNR

H2-MP

H2-LWRK

H2-NINQ

H2-WINQ

H2-SLACK 11

H2-XWINQ

H2-SOPN

H2-POFNR

H2,PXWQ

H2-PSP

H2-PWRC

H2-PSOPN

H2-MSOPN

H2-MDD

H2-Actie Schedulek -

H2-RAND

-0.40 -0.35 -0.30 -0 -0.20 -0 -0.10 -0.0.5 0.00 0.05
95% Confidence Intervals (Tardiness)

Figure 5.16: Comparison of H2 with Dispatch Rules under the tardiness criterion in

problems with due dates



5.6: Dimensionality Increasing 94

20
H2-FCFS

H2-DDATE

H2-FOPNR

H2-Slyr

H2-LWRK

H2-NINbQ

H2-WINQ -

H2-SLACK + -

H2-XWINQ - -

H2-SOPN 1

H2-POPNR 4

H2-PXWQ ----

H2-PSP -

H2-PW4RK 11

H2-PSOPN

H2-MSOPN 1

H2-MDD- -

H12-Active Scdh.4

-0.12 -0.10 -0.08 -0.06 Z0.04 -0.02 -0.00 0.02 0.04 0.06
95% Confidence Intervals (Makespan Criterion)

Figure 5.1-7: Comparison of H2 with Dispatch Rules under the makespan criterion

in problems with due dates

II0I It i 66 1 11, 1'11? i



5.6: Dimensionality Increasing 95

20
H2-FCFS

H2-DDATE

H2-FOPNR

H2-SPT

H2-LW'RiC -

H2-NINQ

H2-WINQ

H2-SLACK i

H2-XWINQ -

H2-SOPN 1

H2-POPNR

H2-PXWQ -

H2-PSP 1

H2-PWRK

H2-PSOPN

H2-MSOPN
H2-MDD 1

H2-Active Scheikl

-RAND -

-0.10 _ -0.08 -0.06 -0.04 -0.02 -0.00 0.02 0.04 0.06
95% Confidence Intervals (Flowtime Criterion)

Figure 5.18: Comparison of H2 with Dispatch Rules under the flowtime criterion in

problems with due dates



5.6: Dimensionality Increasing 96

compare the heuristically obtained one. The maximum size problem which can be

comfortably enumerated this way is {4, 4,,

For medium to large sized problems the solution spaces will be characterized by

examining distributions of solutions obtained by generating 500 sample schedules

using the Random priority dispatch rule. This sampling is a search technique which

if continued for long enough would find the optimal solution. Here, 500 sample

schedules were generated for each problem and the best one selected for comparison.

See Appendix C for a discussion of the relative merits of sampling procedures.

Shown in Figure 5.19 is a characterization of how the quality of solutions gen-

erated by heuristic H2 vary as problem dimensionality is increased. Looking at

* the bottom of the figure, heuristic H2 found the optimal solution for all 50 of the

{2, 5, Gen, Makespan} problems. For the {3, 3, Gen, Makespan} problems, heuristic

H2 found the optimum 49 times out of 50. For the {4, 4, Gen, Makespan} problems,

the heuristic found the optimum 41 times out of 50. For the {6, 6, Gen, Makespan}

problems, the heuristic found the best solutions to 22 of the problems while the Ran-

dom search found 32 of them (4 ties). And finally, for the {10, 10, Gen, Makespan}

case, heuristic H2 found the best solution 23 times, while the Random search found

the best solution 27 times (no ties). When the heuristic failed to find the best so-

lution, the deviation from best was greater than when the Random search failed to

find the best. In summary, the makespans of schedules generated by the heuristic

seem to get farther away from optimal as dimensionality of the problem increases,

yet it still outperforms the dispatch rules under the criterion of makespan.

0

0



5.6: Dimensionality Increauing 97

PI

150 !!'* b iple-

6,g64 Prcoblere E..a stiv E11-Itr Bt

42

I-4x4 Problemsj JE:~h3ustive Enufver 31: lo

IIIrte sonio

1xProbl-e~r ~ ha-s i e rjnt~ i

___ ___ ___ __ ___ ___ __ ___ ___ _ I AC T I tl-SC IED

Figure 5.19: Performance of heuristic 112 as problem dimensionality is increased

0N



Conclusions

Chapter 6

Visualizing algorithms in cartesian completion space helps to show some of the

similarities of existing algorithms that would otherwise not be apparent. If the

problem was represented as sequences, disjunctions or the vertices of a polytope

the similarities of the pruning methods would be obscured. Furthermore, insights

gained as to the location and adjacency of solutions helps to explain the performance

characteristics of certain algorithms.

Heuristic H2 generates significantly better schedules than the priority dispatch

rules on the Job-Shop Scheduling Problem when the optimality criterion is L,,.

Using heuristic H2 to generate a solution to the famous 10xlO Job-Shop Problem in

[47] results in a makespan of 985. The optimal makespan for this problem is known

to be 930. A recent iterative relaxation procedure ("Shifting Bottleneck Procedure"

[1]) SBI gives a makespan of 1015 for this problem.

The choice of optimality criteria affects the relative location of "good" solutions

in the search space. In particular, under the Makespan criterion, the trajectories

corresponding to "good" solutions were found to be geometric neighbors in the com-

98

I



99

pletion space. A large fraction of the "good" solutions were found to lie within a

"tube" through the space. Under the Flowtime criterion, the trajectories correspond-

ing to "good" solutions do not lie within a "tube" consequently an algorithm which

tends to converge upon such a "tube" has little chance of succeeding. Therefore, the

relationships of the locations of the "good" solutions in the solution space should be

taken into account during algorithm design.

Typically, some natural (in the problem formulation) constraint (e.g. a disjunc-

tion or a time ordering) presents itself and is used as the basis of a solution generation

process. There is no a priori reason to believe that using this particular process to

prune the solution space will yield the desired result. A possible consequence of

this is that many of the "good" solutions will be unavoidably pruned as the process

proceeds. Two possible results of this follow. By throwing away some of the "good"

solutions, it is now more difficult to continue the search. And, deciding which part

of the space to prune may be more difficult as the properties f the set under con-

sideration are less uniform thereby making the calculation of bounds more difficult.

Heuristic Hi/CT can be used to test whether or not some set of constraints under

consideration are capable of pruning with discrimination; that is, to selectively prune

the space such that only the more desirable regions remain. This constraint testing

can be accomplished without developing branching indicators and a lower bound

(some necessary components for a branch and bound algorithm).

Symmetries in problem structure affect the spatial distribution of the trajectories

corresponding to good schedules and should be taken into account during algorithm

dezign. Under the L,, criterion, many "good" solutions were found to be adja-

cent in the cartesian space. Symmetries introduced into the problem cause certain

"mirror image" trajectories to be equivalent. This makes it difficult to converge to a

S
II-11_._11 ; 1 1,1 1-WA



100

relatively small region containing a set of "good" solutions. Therefore, either the set

of constraints used should be capable of describing these symmetries, or they can be

implicitly taken care of by having the resulting solutions map to other solutions via

the symmetries.

4



Suggestions for Future Work

Chapter 7

7.1 Modify Heuristic H2

In heuristic H2, the constraint used to prune the space was the addition of a prece-

dence constraint. This corresponds to the removal of a "2D corner" in completion

space. In a 2D case, "removing a 2D corner" deletes the entire associated obstacle.

In a 3D case, "removing a 2D corner" deletes 4 out of 6 of the bar shaped extensions

of the obstacle shown in Figure 4.4.

The proposed modification is to use constraints which remove less than 4/6 of

the bar shaped extensions of the obstacles ("a 3D corner"). The remainder of

the obstacles is left for later consideration. Instead of pruning by adding a sin-

gle precedence constraint, prune by imposing a boolean combination of precedence

constraints. Given three activities which correspond to an obstacle consider the ad-

dition of constraints of the form (A, -< Aj) V (Ai -< Ak), (Aj -< At) V (Aj -< A,),

(At -A ,) V (A, -< Aj). These correspond to the three ways of deleting a "3D

corner

As in heuristic H2, choose the constraint who's compliment, if imposed, would

101

0SIrIl lr'



7.2: Develop New Heuristics Modeled On Heuristics H1/CT and H2 102

result in minimum slack in the resulting network. The compliments of the three

constraints above are (Ai -< A,) A (Al. -< A.), (A. -< Aj) A (Ai -< Aj), and (A, -<

Ak) A (Ai -< Ah). Implementing this would involve some method of encoding these

constraints, and keeping track of the implications of their combinations.

In general, for an nD problem one could consider deleting an "niD corner", an

"(n - 1)D corner" and so on down to one plus the number of available machines of a

given type. When there is more than one of each machine, say m, the lowest order

constraint which need be considered is of the form (Ai -- Ai)V(Ai -4 As) V.. .V(Ai -

A,+.).

Note that this approach reduces to heuristic H2 when the simplest possible con-

straints are used; if (A. -< Ai) generates the longest path then impose the constraint

(Ai -< A.)-

One possible approach to utilizing a mixture of these constraints would be to

consider addition of the highest dimensional constraints first, then those of the next

highest dimension, down to the lowest order ones which need to be considered. Al-

ternatively, one could consider starting from 1 or more dimensions higher than the

lowest order ones which need to be considered.

7.2 Develop New Heuristics Modeled On Heuris-

tics Hi/CT and H2

Heuristic Hi/CT uses the addition of selected precedence relations to prune unde-

sirable regions of the search space. These selected precedence relations are capable

of describing a set of relatively good minimum maximum lateness schedules. Under

other objective criteria the distribution of good schedule trajectories through the

110



7.2: Develop New Heuristics Modeled On Heuristics H1/CT and H2 103

space cannot be described using such a set of selected precedence relations. This was

demonstrated for the flowtime criterion.

Flowtime is minimized when there is a minimum of delay between successive

activities in a job. By first processing all of the activities job 1, then all of the

activities of job 2 and so on, one could generate a schedule of minimum flowtime.

This schedule corresponds to a trajectory which traverses only the edges of the space.

The addition of precedence relations tends to prune away the outside of the space

and converges towards a tube, the opposite of what is needed under the flowtime

criterion. Alternative sets of pruning constraints need to be proposed and tested.

One method of pruning would be to remove solid regions from the interior of the

space ("hollow it out" so to speak) in conjunction with some trimming from the

outside. This type of pruning would tend to converge toward a shell like region.

Heuristic H2 uses the "length" of certain trajectories through the space as the ba-

sis of the pruning operations. These lengths were computed by summing up for each

piecewise linear segment of the trajectory, the maimum, of the segment's projections

on to the coordinate axes. This is only one of many possible metrics that could be

used to assign weights to trajectories in the space. The particular "length" metric

used by H2 is effective when the objective criterion is that of minimum maximum

lateness. Perhaps alternative metrics could be used by heuristic H2 to find good

solutions under other objective criteria. An example alternative metric would be to

weight the processing time of each activity (stretch the length along the coordinate

axis associated with processing the given activity) by a work in process inventory

cost.

I

0



7.3: Modify Heuristic Hi/CT 104

7.3 Modify Heuristic Hi/CT

Heuristic H1/CT operates by pruning as much of the search space as possible without

eliminating the k best schedules found so far. It may be the case that potentially

good regions of the space are being pruned before they are even explored. Modify

the heuristic so that regions of the space are pruned only if both of the following

conditions hold. First, as before, never prune regions containing the k best schedules.

Second, only prune regions which are known (from the samples taken so far) to

contain inferior schedules.

*_ 7.4 Veronoi Approach

One way of approaching a scheduling problem is to convert it into a shortest path

problem and then solve it with some known optimization algorithm. Davis [25]

did this with a certain class of resource constrained PERT network problems. To

transform a PERT network first divide each activity into a chain of unit processing

time activities (this is contingent upon having only integer processing times) inserting

the necessary precedence relations between the unit activities. Any cut across this

network corresponds to some (integer) feasible partial state of completion of the

original tasks. Form a new network with these feasible states of completion as nodes.

The "distance" between any two adjacent nodes is one time unit. Find the shortest

path from-start to end using a dynamic programming approach.

There are two problems with this. One, the activities must be of integer length.

*Two, the activities cannot be very long and there must be a fairly large ratio of

precedence-relations to activities or else there will be a large number of partial states

of completion generated. In other words, a combinatorial problem in n tasks can be

11 1 1 10 1 1 1

,I IIS1o IR' I l 1



7.4: Veronoi Approach 105

transformed to a polynomial time problem in the number of nodes but the problem

happens to have an unacceptably large number of nodes.

The proposition is to generate a network which has the least possible complexity,

yet has the property that any valid trajectory can be deformed to coincide with the

network. The problem then reduces to searching this network for the optimal path.

Consider the 3D cross shaped obstacle shown in Figure 4.4. If this was the only

obstacle in the space, then the desired network could be defined as follows. Start

with the rectangular network formed bf the edges of the center of the 3D obstacle.

Then attach two additional edges; one from the origin of the space to the closest

vertex of the rectangular network; and one from the far corner of the space to the

closest vertex of the rectangular network. If one deformed this network such that

its edges were equidistant from the obstacle and the faces of the space then it would

form a Veronoi diagram.

In this 3D case there are 14 edges, 12 of which are associated with the rectangular

solid center of the obstacle and 2 connecting it to the rest of the space. In general

there are (n/2)2" edges on an n dimensional rectangular solid. There are 2" vertices

from each of which emanates n edges. Each edge is connected to two vertices hence

the factor of 1/2. For a {10, 10, Flow, } problem the desired network is formed by

the edges around the center of each of the 10 10D obstacles. Since this is a flow

type problem, the obstacles line up along the body diagonal of the 10D space. This

total number of edges in this case is 10(10/2)2"° = 51,200. This is a relatively small

number of edges to search considering an upper bound on the number of distinct

sequences associated with this problem is (10!)1 ° = 3.96E + 65. For the General

structure problem in which the obstacles do not line up along the body diagonal,

additional edges must be found to connect the various rectangular networks.



7-5: Normalize Path Probabilities For Random Sampler And Active Sampler 106

7.5 Normalize Path Probabilities For Random

Sampler And Active Sampler

The random and active samplers that I have been using have a tendency to gener-

ate anti-symmetric schedules (when the symmetry considered is the inversion of all

precedence relations in the problem specification). The solution sequences of this

inverted problem should be the same as the original problem. Using either of these

sampling schemes produces the various sequences with different probabilities for the

inverted problem versus the non-inverted problem.

The source of this discrepancy can be visualized on a rectangular 2D grid. Here

a sequence corresponds to a random walk from the lower left of the grid to the

upper right, with the steps taken either one to the right or one up. The probabilities

associated with the branches at each branch point are equal.

As an extreme case consider a 1 (vertical step) x 100 (horizontal steps) grid.

There are two ways to leave the origin each with 1/2 probability. At the other end

there are two ways to enter the destination. Note, that the probability of entering

the destination from the bottom is (1/2)1w, a ver, small number. However, in the

inverted problem, the probability of using this particular link is 1/2.

A normalization scheme wherein the probability of taking a particular branch

is equal to the number of steps left in the branching direction divided by the total

number of steps left to take resolves this anti-symmetric problem.

The grid associated with an actual scheduling problem is by no means a regu-

lar grid as assumed in the above example; it may be close enough such that this

scheme might do some good. It seems plausible, in that when considering which

task to schedule next, higher probability is given to the task which has many tasks



7.6: Cyclical Schedule Formulation 107

constrained to follow it. This should reduce the probability of generating a schedule

in which one "job" is excessively delayed.

7.6 Cyclical Schedule Formulation

A slight modification of the heuristic might make it suitable for use in cyclical schedul-

ing problems. In these problems (described in [50]), the same mix of activities is to be

processed over some time period (e.g. daily) and there may be some partial ordering

among these activities. The objective is to find an ordering of activities which is of

minimum cost over the given time period when the Gantt chart of the final schedule

is repeated periodically.

In the 2 job case, the usual 2D space is wrapped around a torroid as shown in

Figure 7.1. A valid schedule corresponds to a continuous trajectory which avoids

the obstacles while making 1 twist around the major axis and one twist around the

minor axis.

Instead of computing the slacks between activity pairs by propagating arrival

and due date information through the activity network, propagate information from

one of the tasks under consideration around the network (consider the precedence

network to be wrapped around a cylinder - head touching tail) to the other task in

question. The slack between two tasks is how far apart two tasks can be displaced.

The rest of the algorithm would remain the same.

.0.0

.0



7.6: Cyclical Schedule Formuldation 108

Figure 7.1: Torroidal Completion Space



7.7: Reprsentation Tansformation 109

7.7 Representation Transformation

Many algorithms that have been developed use as a basis of decision the setting of a

precedence. Each decision can be interpreted as selecting a certain subset from the

origiaal set of solutions. Depending upon the optimality criterion used, the rejected

subset may contain a disproportionate number of the good solutions.

It is proposed to use some transformation of the original precedence constraints

which allows solutions which are similar in value to be in some sense adjacent (e.g.

Adjacent integers along the number line differ by only a single bit when represented

in Grey Code but may differ by many bits when represented in straight binary.)

Hopefully, this would improve the performance of branch and bound algorithms

by allowing easier characterization or bounds to be computed as the subsets under

consideration have more uniform properties. In the case of relaxation algorithms,

since good solutions are adjacent, local neighborhood type searches should yield

improved solutions.

Consider representing a sequence as a binary string where each digit corresponds

to the orientation of a precedence relation. In general, the good schedules will be

scattered between 0...0 and 1...1. Another way of stating the goal of solving one of

these problems is to find a 1 to I (bijective) mapping from the original binary strings

to a set of string in which 0...001 corresponds to the best sequence, 0...010 to the

next best and so on. Then, to find the good schedules simply map back starting

from 0...001 and counting up.

A fully general mapping function should be able to map any element from the

first set to any arbitrary element of the second set. There are 2" elements in the first

set (n digits), and therefore (2")! possible transformations.

I el



7.8: Learning Boolean Functions/Transformations 110

7.8 Learning Boolean Functions/ Transformations

Pose the scheduling problem as one of learning the characteristics of a good sched-

ule by observation and experimentation. Get some initial examples to learn from

via sampling. Formulate some hypothesis in some domain of characteristics being

considered. Then do planned experiments. This is different from the usual learning

by example because it allows one to immediately test a current hypothesis instead

of waiting for a counterexample to be presented.

I6
0d

6

- --



Free Space Fraction

Appendix A

The following is an analysis to show what fraction of the completion space is

occupied by obstacles. The approach is combinatorial in nature and resembles the

multinomial heorem because it involves expanding an expression of the form (a +

b + c + ... + 9)'. There are m (number of machines) terms inside of the parenthesis

and the exponent n is the number of jobs. the ratio of free space (space not occupied

by obstacles) to the total volume is given by the following formula assuming that all

activity processing times are unity.

(') n m
free/total W-{"' (A.1)~0 n>m

The top of the first expression is read as m-falling-factorial-n which is like m! but

consists of only the first n terms (e.g. (6)3 = 6 * 5 * 4).

A simple 3D example shows how the above expression arises. Say that we have
four machines a, b, c, d. Each job visits each machine once, so for each job we can

write a term of the form (a + b + c + d) possibly with the elements peimuted (i.e.

(b + a + c + d)) but the order really doesn't matter under the addition operator. If

111

'MO =,1 - . r , -



112

there are three jobs then we have three terms of the above form. Any rectangular

block in the job-space corresponds to the processing of one activity from the first job,

one activity from the second, and one activity from the third. There is a one to one

correspondence between the individual terms in the expansion of (a + b -4 + d)3 and

the 3-Dimensional rectangular blocks associated with the example 3-jo>b problem.

Note that in the expansion there will be terms like a3, b 2 and abd. Only, terms of

the form z 1Y zI correspond to free space. Any term with a factor's exponent greater

than 1 means more than one machine of some given type is required if a schedule

trajectory is to enter this particular block of the space.

The total number of blocks in this example is 4' - 64. The number of free blocks

can be computed by consideration of a series of choices involved in the expansion

of (a + b + c + d) 3 which lead to terms of the form zlyLz1 . The object is to find

the sum of coefficients of these terms in the final expansion. Note that this is equal

to the sum of multinomial coefficients for terms of the form atbichd' where one of

i,j, k, I is equal to 0 and the others are equal to unity. In the interest of generality,

the multinomial theorem is being avoided.

Consider the following series of choices in the expansion.

Choose one term from (a + b + c + d) that won't give a result with an exponent

greater than 1 - there are 4 ways to do this. Choose a, b, c or d.

Next choose one term from (a+b+c+d) that won't give a result with an exponent

greater than 1 when multiplied by the previous choice. There are 3 ways to do this.

There are 2 ways to choose the next factor and one way to choose the last.

Then

4 * 3 * 2 * 1/4 s 3 3/8 is the free space fraction.

1014

Rd- tR.



113

Note that if the number of choices (n = #jobs) is greater than m then an expo-

nent greater than 1 is unavoidable - hence the n > m case in the volume fraction

expression.

This leads to the following question: If the volume fraction of free N-Space is 0

then what space is left in which to plot trajectories? What happens if one has 3

machines and 4 jobs. Obviously not all 4 jobs can ever be co-processed. In other

words there is no free 4D space. But what about 3D subspaces. It turns out that the

same formula is valid for this case also. Instead of letting n be the number of jobs,

let n be equal to the dimensionality of the subspace of interest. Then for a given

problem one can calculate how much of each dimensionality space is free.

Note that the above analysis was carried out for the one of each machine job-

shop problem. It could also be easily modified for the case of more than one of each

machine (look for terms of different form) or more than one of certain machines.

Perhaps this type of calculation could be used to evaluate the usefulness of purchasing

some new piece of equipment. If the new purchase would result in no increase in the

free space fraction then there is no point in purchasing it. One might also consider

free space increase per dollar spent as an indicator of relative merit of alternative

purchases.

Coefficients could be put in front of each a, b, c etc to reflect processing times

thereby improving the accuracy of the calculation. Also, instead of simply using

a as a primitive term, use a term of the form aPT to represent the facts that we

need machine a, person P, and tooling T to perform this operation. Of course this

removes much of the symmetry from the calculations and mean that a computer

*M might be required for the computation.

0



N-D Cone Fraction Derivation

Appendix B

We will now estimate the fraction of the space contained within the boundaries

of a cone in n-space (completion space). Figure B.1 shows an example of a conical

or pyramidal region in 3D space defined by two back to back pyramids. One has

its apex at the origin (shown using dotted lines), the second has its apex at the far

corner and they meet at their bases. For this example it is assumed that the cube

is a units along each edge and the parameter b is allowed to vary from 0 to a thus

defining the shallowness of the cone.

The volume Vp of an n-D pyramid is defined as follows where B is the base and

h is the height.

VP= = h (B.1)

The total volume V, for the cube is given by a".

The volume of 2 back to back pyramids V2p along the diagonal is

V2, B(h 2 + h2) - B/'WY Ba (B.2)

114

0 I



115

swa

000



Then the volume fraction in terms of B the commot base of the to pyramids, the

dimensionality of the space n and the edge dimension a is

V,_p B (B.3)

What is needed now is an expression for the base B. In the 2D case the base B2

is simply W2 as shown in the top of Figure B.2.

The base in 3D B3 is defined inductively in terms of B2 as indicated in Figure B.2

as follows.

B 3 = 3B 2  )) r )2dr (B.4)
Jo Centroid(B2) - Centroid(B3)j

In general the base in n-space BR is given by

B. = C,.B].-0 (-)" 2 dr = CtBnn- (B.5)

Where C,, is the number of B.- 1 which are involved in the integration, d is

defined as ICentroid(Bn) - Centrod(B,.-i)I and the exponent (n - 2) reflects the

dimensionality of B,-. This gives a recurrence relation for BR with the additional

terms C, and d,. These two quantities can be computed directly. Since CR is the

number of "faces" of B, it is also equal to the number of unique sets of n - 1 vertices

which can be selected from a set of size n. Then

C, n-1 = (n- i)!=n (B.6)

To compute d take the magnitude of the difference between two vectors defined

in the coordinate system of the far corner pointing to the centroids of Bn and Bn-1.

S=



117

b

bV

0 Figure B.2: Base Calculation



118

Centroid(B,,) =il+ '4 + . + ,

and (13.7)

Centroid(B,-i) = T1 + ~i + + --- in- 1

Then the Euclidean distance between these two centroids dn is

d,. = - I)b2( -'~- - ' 2+ ( '2 b(B.8)

Substituting C,, and d., into Equation B.5 gives

In

Starting from the boundary cpidition B2 = &v' and working out a few iterations

gives

Ba =- -V- (B.10)

NI- 1)! ]3

Substituting this into Equation B3.3 gives the fraction of the total volume enclosed

within the two back to back pyramids as

V2P = ()(n-1) 1 j and (B.11)
a (n -1

0 t



Notes on Random Sampling

Appendix C

There are a few issues concerning random schedule generation which should be

mentioned. The first issue is what class (set) of schedules one is sampling from. The

second issue is how the sampling is biased within this set. The third is the distinction

between the mode and the range of the sampling distribution. And the fourth issue

concerns joint distributions.

Ideally, one would like to sample from a set of schedules which is guaranteed to

contain all the schedules of interest. This could be accomplished either by sampling

from the complete set or by sampling from another set whose members somehow

dominate the complete set under the optimality criterion being used. One complete

set would he the set of all unique sequences. This set has infinite cardinality if one

allows delays in processing a given sequence. If one processes each activity as soon

as possible consistent with the given sequence, then each sequence corresponds to an

Early Start Schedule. These are the so called Semi Active Schedules.

The class of Non Delay schedules can be defined in the context of a Job Shop

simulation. These schedules are generated by having each machine never wait (delay)

119

Jil
awl APv-



120

to process some activity if there is an activity in the machine's queue. The set of

Non Delay Schedules is a subset of the set of Early Start Schedules.

Given a set to sample from, the distribution of objective function values varies de-

pending on how the sampling operation is performed. For example, consider sampling

with equal probability from the set of Non Delay Schedules. An experimental esti-

mate of such a distribution was obtained by using the Random priority dispatch rule

to generate sample schedules from a {10, 10, Gen, Makespan} problem. The proba-

bility of obtaining any given sample schedule can be determined after the particular

schedule has been generated. This is done by multiplying together the probabilities

associated with each machine loading decision. Choosing one activity from a queue

of five activities contributes a factor of 1/5 to the overall probability of obtaining

the particular sample schedule. These computed probabilities were used as weights

on the samples obtained. This weighted distribution is plotted in Figure C.1. This

is an estimation of the distribution of schedule makespans assuming that each Non

Delay schedule is equally likely to be chosen.

Notice that using the Random priority dispatch rule (which assigns equal prob-

ability to choosing the various activities from a queue) introduces a biasing into the

sampling procedure. The distribution from Figure C.1 is replotted in Figure C.2 in

quantile format along with sample distributions obtained using the Random priority

dispatch rule and an active schedule generator.

The biasing introduced by the Random dispatch rule significantly improves the

expected makespan of the sample schedules in this case. This is because schedules

having less conflicts which need to be resolved (shorter queues) have higher proba-

bilities of being generated using this method.

1



121

S3.00e.03

2.0 0e0

1 .50e-03

1.00e-03

5.00e-4

0.00e+0
100 1200 140 160 1800 2000 2200 240 2600

Schedule Makespan

Figure CA1: Normalized Sample Distribution

0g

MM MY0-



122

~,2600

- Ruidom dipmthins

- .Rutdom dipathing (Normalized)

2400 .-tv ceue

2200

200

100

0 10 20 30 40 50 60 70 80 90 100
Quantites

Figure 0.2: Comparison of Distributions Obtained Using the Random Rule, a Nor-

malized Random Rule and an Active Schedule Generator

......



123

The distributions shown in Figures C.A and C.2 are approximately Gaussian.

Although the tails of the distributions have finite length the probabilities associated

with the tails gets very small before the end of the tails is encountered. In [47] is

suggested a method based on sampling for generating a schedule which falls with

some known confidence into a fraction of the area under the distribution. Suppose

that the true distribution was known. One could partition the distribution into two

parts. One part of area a (starting with the left side of the left tail) and one of area

1 - a. Then any sample generated has probability a of falling within the range of

the a area. The probability of at least one out of n samples falling within the a area

is equal to 1-Probability of all samples falling in the (1 - a) area. This is simply

1 - (1 - a)". Thus if a is 0.01 and n is 500 then the probability of generating at least

one sample out of the 500 which lies within the top 0.01 of the area under the curve

is 1 - (1 - 0.01)"' = 0.993.

Suppose one of the samples lies within the range of the 0.01 area. This is not the

same as being in the top 0.01 of the range of possible schedule values. Consider a true

Gaussian distribution and define area a as the area under the left hand tail starting

3 standard deviations from the mean. Then a is 0.0015, and having a sample fall

within the range of this area means that it falls somewhere between minus infinity

and minus 3 sigma. This situation is somewhat exaggerated; in the case of the

approximate Gaussian distribution mentioned above, having a sample fall within the

top 0.01 of the area under the distribution translates to being approximately within

the top 0.10 of the range of possible schedule values.

As illustrated, the distributions of Makespans values is approximately Gaussian;

0 this. also true of the distribution of Flowtime values. As a matter of fact they seem

to be almost independent as evidenced by the scatter plot shown in Figure C.3.

0•



124

4110500

++

9500 ++ +
+ + + + + +

+Z$ + + + +

9000 *+

+4: + ++
4t+ + +

4 +
0  

+

+ +; +f* + '. 4 -*+

750+ + + +

+ + ++~ ++ +

1100 1200 1300 140 1500 1600
Makespan

Figure C.3: Joint Distribution Scatter Plot, Schedule Makespan vs Schedule Flow-

time



125

To generate this plot, first the makespan and flowtime of 1000 sample schedules

generated using the Random priority dispatch rule were computed. Then one data

point was plotted (flowtime vs makespan) for each schedule generated. Four percent

of the range was added to the data so that duplicate data points would not overprint.

0

0

0

0



Applying Hi/CT to a Problem

with Symmetry

Appendix D

A 12 job by 6 machine problem was generated by making a copy of each of the jobs

in a 6 job 6 machine problem ({6, 6,, }). Experiments similar to those of Chapter 3.3

using heuristic H1/CT were performed on this new problem using the criteria of

makespan and flowtime. For these experiments, first 200 sample schedules were

randomly generated, then the top ten schedules according to the optimality criteria

were selected. If all ten of these schedules had precedence relations in common,

these common precedence relations were used to prune the original problem and the

sampling repeated. The results of these experiments are shown in Figures D.1 and

D.2. The-procedure produced mixed results in the case of the makespan criterion.

After 242 of the 450 possible precedence relations were used to prune the space the

probabilities of generating very low makespan schedules was reduced. This situation

0 improved during a subsequent iteration as shown by the solid curve.

126



127

3140

as13,5 ....... 0 of 450 Precedence Relations Added

--- 242 of 450 Added

30 -330 of 450 Added

125

120

115

110 - - - - - - - -r -

95
0 10 20 30 0 50 60 70 80 90 100

Quantile

Figure D.1: Hi/CT applied to a 12 job 6 machine problem (makespan criterion)



128

1058

100 .m ...... 0oaf 450 Peede.. RelaIons AddedI

--- 213 of 450 Added

950 .30 of 450 Added
-337 of 450 Added

900

750

70 1 0 3 0 5 0 7 0 9 0

Quantile

Figure D.2: Hi/CT applied to a 12 job 6 machine problem (flowtime criterion)



129

The mixed results in the above{12, 6, G, Makespan} experiment were unexpected.

One possible explanation for this is that a number of symmetries were introduced into

the state space by including a copy of each job. As sample schedules were generated

and compared these symmetries were not taken into account thereby causing a lack

of adjacency between schedule trajectories which would mirror on to one another.

Consider a 2-D subspace of the state space defined by a job and its copy as shown

in Figure D.3. Notice that there is an axis of symmetry along the main diagonal. Any

trajectory segment which crossed the diagonal could be mapped into an equivalent

(in terms of objective function value) trajectory on the opposite side of the diagonal.

An experiment was performed in order to verify the above supposition. There

would be two ways in which to take these symmetries into account. One, the sample

schedules could be generated as before and some post sampling processing could be

done to mirror the trajectories into a canonical form suitable for the comparison

step. Alternately, schedule generation could be restricted such that trajectories we re

confined to one of the two regions defined by the diagonal of Figure D.3. The latter

of these two was chosen on the basis of ease of implementation.

Notice that the obstacles all lie on the diagonal in Figure D.3 and that in order to

pass from one region to the other the trajectory must pass by one of these obstacles.

But, negotiating these obstacles corresponds to making a machine loading decision

between two identical (in terms of objective function value of the completed sched-

ule) alternatives. The sampling scheme was modified such that when this situation

occurred a unique choice was made (i.e. stay in the lower region or equivalently give

activities from Job 1 priority over those from Job 2).

The correlation procedure was then repeated on the {12, 6, G, Makespan) problem

with the modified (to incorporate mirroring) random schedule generator. The results

1 1



130

END

STARTJb>

Figure D.3: Symmetric 2-D Subspace



131

of these experiments are shown in Figures D.4,D.5. These results are very similar

to those of the {6,6,G,Makespan} problem from which the {12, 6, G, Makespan}

was composed. The distributions are seen to uniformly improve during successive

iterations.

0

J 11 1 , 1 1 1 , 1 1 1f 1 1 1
MR



132

~140

135 .... 0 of 450 Precedenoe Relazions Added
- 206 of 450Added
z 282 of 450 Added

319 of 450 Added

130 345 of 450Added

120

115 - J

9S.

0 10 20 30 40 0 60 70 80 0 10
Quantile

Figure DA4: Hi/CT modified to account for symmetry applied to a 12 job 6 machine

problem (malcespan criterion)

En



133

900 ...... 0of 450 Precedence Relations Added
174 of 450Added
294 of 450Added
333 of 450 Added

-4 3Sof 450Added
01

Soor -0

70

0 10 20 30O 40 50O 6 70 80 0 10
Quantile

Figure D.5: Hi/CT modified to account for symmetry applied to a 12 job 6 machine

problem (flowtime criterion)



Bibliography

[1] Adams, Joseph; Balas, Egon; and Zawack, Daniel,

"The Shifting Bottleneck Procedure for Job Shop Scheduling", Management

Science Research Report No. MSRR-525, Carnegie-Mellon University, Pitts-

burgh, Pennsylvania, July 1986.

[2] Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D.,

The Design and Analysis of Computer Algorithms, Addison-Wesley, Read-

ing, MA; Menlo Park, Ca.; London; Amsterdam; Don Mills, Ontario; Sydney,

1974.

131 Akella, R.; and Kumar, P. R.,

"Optimal Control of Production Rate in a Failure Prone Manufacturing Sys-

tern", Series LIDS-P; 1427, Laboratory for Information and Decision Systems,

MIT, January 1985.

[4] Akella, Ramakrishna; Choong, Yong; and Gershwin, Stanley B.,

"Performance of Hierarchical Production Scheduling Policy", Report # LIDS-

134

S0 R15

NOU 10OMgh PNI=lna ,M 96



BIBLIOGRAPHY 135

FR-1357, Laboratory for Information and Decision Systems, MIT, February

1984.

[5] Akers, Sheldon B.; and Friedman, Joyce,

"A Non-Numerical Approach to Production Scheduling Problems", Operations

Research, Vol. 3, No. 4, pp 429-442, November 1955.

[6] Akers, S. B.,

"A Graphical Approac', to Production Scheduling Problems", Operations Re-

search, Vol. 4, pp 244-245, 1956.

[7] Allen, James F.,

"Maintaining Knowledge about Temporal Intervals", Communications of the

ACM, Vol. 26, No. 11, pp 832-843, 1983.

[8] Baker, Kenneth R.,

"A Comparative Study of Flow-Shop Algorithms", Operations Research, Vol.

23, No. 1, pp 62-73, January-February 1975.

[9] Bakshi, Mahendra S.; and Arora, Sant Ram,

"The Sequencing Problem", Management Science, Vol. 16, No. 4, pp B247-

B263, December 1969.

[10] Bales, Egon,

"Discrete Programming by the Filter Method", Operations Research, Vol.

15, pp 915-957, 1967.

[11] Barr, A.; and Feigenbaum, E. A.,

Handbook of Artificial Intelligence, Vol. 1, William Kaufmann, Inc., Los

Altos, California, 1981.

0I



BIBLIOGRAPHY 138

[12] Bourne, David A.; and Fox, Mark S.,
"Autonomous Manufacturing: Automating the Job-Shop", Computer (USA),

Vol. 17, No. 9, pp 76-86, September 1984.

[131 Brooks, George H.; and White, Charles R.,

"An Algorithm for Finding Optimal or Near Optimal Solutions to the Produc-

tion Scheduling Problem", The Journal of Industrial Engineering, Vol. XVI,

No. 1, pp 34-40, January-February 1965.

[141 Buer, H.; and M~hring,

"A Fast Algorithm for the Decomposition of Graphs and Posets", Math. Opns.

Res., Vol. 8, pp 170-184, 1983.
I

[15] Bunnag, Panit; and Smith, Spencer B.,

"A Multifactor Priority Rule for Jobshop Scheduling Using Computer Search",

HE Transactions, pp 141-146, June 1985.

[16] Campbell, Herbert G.; Dudek, Richard A.; and Smith, Milton L.,

"A Heuristic Algorithm for the n Job m Machine Sequencing Problem", Man-

agement Science, Vol. 16, No. 10, pp B630-B637, June 1970.

[17] Carlier, Jacques,

"The One-Machine Sequencing Problem", European Journal of Operations

Research, Vol. 11, pp 42-47, 1982.

[18] CarlierJ.; Chretienne, Ph.; and Girault, C.,

"Modelling Scheduling Problems with Timed Petri Nets", Advances in Petri

and G. Raucairol,

I!



BIBLIOGRAPHY - 8,p 28,18.137

Sringer-Verlag, Berlin, Heidelberg, New York, Tokyo, Lecture Notes in Corn-

[19] Charlton, John M.; Death, Carl C.,

"A Method of Solution for General Machine- Scheduling Problems", Opera-

tions Research, Vol. 18, pp 689-707, 1970.

[20] Chow, We-Min; MacNair, Edward A.; and Sauer, Charles K.,

"Analysis of Manufacturing Systems by the Research Queueing Package", IBM

J. Res. Develop., Vol. 29, No. 4, pp 330-342, July 1985.

[21] Conway, R. W.,

"An Experimental Investigation of Priority Assignment in a Job Shop", RM-

3789-PR, The Rand Corporation, Santa Monica, CA, 1964.

1221 Chryssolouris, G.; Wright, K.; Pierce, J.; and Cobb, W.,

"Manufacturing Systems Operation: Dispatch Rules Versus Intelligent Con-

trol", To be published in "Robotics and Computer-Integrated Manufacturing",

1987.

[23] Clemmer, George L.,

"An Artificial Intelligence Approach to Job-Shop Scheduling", Master Thesis,

Sloan School of Mgmt., MIT, September 1984.

0[24] Conway, Richard W.; Maxwell, William L.; and Miller, Louis W.,

"Theory of Scheduling", Addison-Wesley, Reading, MA; Menlo Park, Ca.;

London; Amsterdam; Don Mills, Ontario; Sydney, 1967.

[25] Davis, Edward W.; and Heidorn, George E.,

"An Algorithm for Optimal Project Scheduling Under Multiple Resource Con-



BIBLIOGRAPHY 138

straints ", Management Science, Vol. 17, No. 12, pp B803-B816, August

1971.

[261 Davis, Edward W.,

"Project Scheduling under Resource Constraints - Historical Review and Cat-

egorization of Procedures", AIEE Transactions, May 1973.

[27) Davis, Edward W.; and Patterson, James H.,

"A Comparison of Heuristic and Optimum Solutions in Resource-Constrained

Project Scheduling", Management Science, Vol. 21, No. 8, pp 945-955,

1975.

[28] Dempster, M. A. H.; Fisher, M. L.; Jansen, L.; Lageweg, B. J.;

Lenstra, J. K.; and Rinnooy Kan, A. H. G.,

Mathematics of Operations Research, Vol. 8, No. 4, pp 525-537, November

1983.

[291 Dewdney, A. K.,

"On the Spaghetti Computer and other Analog Gadgets for Problem Solving",

Scientific American, pp 19-26, June 1984.

[301 Dewdney, A. K.,

"Analog Gadgets that Solve a Diversity of Problems and Raise an Array of

Questions", Scientific American, pp 18-28, June 1985.

[31] Engelke, H.; Grotrian, J.; Scheuing, C.; Schmackpfeffer, A.; Schwarz,

W.; Soilf, B.; and Tomann, J.,

"Integrated Manufacturing Modeling System", IBM J. Res. Develop., Vol.

29, No. 4, pp 343-355, July 1985.

i m l ll

ga



BIBLIOGRAPHY 139

[32] Erschler, J.; Fontan, G.; Merce, C.; and Roubellat, F.,

"A New Dominance Concept in Scheduling n Jobs on a Single Machine with

Ready Times and Due Dates", Operations Research, Vol. 31, No. 1, pp

114-127, January-February 1983.

[33] Fisher, Marshall I.,

"Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part

/P, Operations Research, Vol. 21, pp 1114-1127, 1973.

[34] Fox, B. R.; and Kempf K. G.,

"A Representation for Opportunistic Scheduling", 3rd ISRR, Edited by

Faugeras and Giralt,

pp 111-117, 1986.

[35] Fox, B. R.; and Kempf, K. G.,

"Opportunistic Scheduling for Robotic Assembiy", Proc. Inter. Conf on

Robotics and Automation, IEEE, pp 880-889, 1985.

(36] Fox, B. R.; and Ho, C. Y.,

"A Relational Control Mechanism for Flexible Assembly", Proceedings of

Advanced Software in Robotics, Liege, Belgium, pp 2.A/1-11, May 1983.

[37] Fox, Mark S.; Allen, Brad; and Strohm, Gary,

"Job-Shop Scheduling: An Investigation in Constraint-Directed Reasoning",

AAAI-82, Vol. 1, pp 155-158, 1982.

[38J Fox, Mark S.,

"The Intelligent Management System: An Overview", Technical Report,

Robotics Institute, Carnegie-Mellon Univ., December 1982.

Baku=



BIBLIOGRAPHY 140

[39] Fox, Mark S.; Smith, Stephen F.; Allen, Bradley P.; Strohm, Gary

A.; and Winberly, Francis C.,

"ISIS: A Constraint-Directed Reasoning Approach to Job Shop Scheduling",

IEEE Paper 0111887, pp 76-81, 1983.

[40] Fox, M__rk S.,

"Constraint-Directed Search: A Case Study of Job-Shop Scheduling", CMU-

RI-TR-83-22,CMU-CS-83-161, Carnegie-Mellon University, 1983.

[41] Fox, M. S.; and Smith, S. F.,

"ISIS - A Knowledge Based System for Factory Scheduling", Expert Syst.

* (GB), Vol. 1, No. 1, pp 25-49, 1983.

[421 Gershwin, Stanley B.,

"Material and Information Flow in an Advanced Automated Manufacturing

System", LlDS-P-l199, Laboratory for Information and Decision Systems,

MIT, Cambridge, MA., May 1982.

[43] Gershwin, Stanley B.,

"An Efficient Decompostion Method for the Approximate Evaluation of Pro-

duction Lines with Finite Storage Space and Blocking", Report # LIDS-

P-1309, Laboratory for Information and Decision Systems, MIT, December

4 1983.

[44] Gershwin, Stanley B.; Akelia, Raxnakrishna; and Choong, Yong,

"Short Term Production Scheduling of an Automated Manufacturing Facility",

Report # LIDS-FR-1356, Laboratory for Information and Decision Systems,

MIT, February 1984.



BIBLIOGRAPHY 141

[45] Gershwin, Stanley B.,

"An Elficient Decompostion Method for the Approximate Evaluation of Pro-

duction Lines with Finite Storage Space", Report # LIDS-P-1308, Laboratory

for Information and Decision Systems, MIT, July 1983, revised September

1983, March 1984.

[46] Giffler, B.; and Thompson, G. L. ,

"Algorithms for Solving Production Scheduling Problems", Operations Re-

search, Vol. 8, pp 487-503, 1960.

[47] Giffler, B.; Thompson, G. L.; and Van Ness, V. ,

Edited by Muth, J. F., G. L. Thompson,

"Numerical Experience with Linear and Monte Carlo Algorithms for Solving

Production Scheduling Problems ", Industrial Scheduling, Chap. 3, pp 21-38,

Prentice-Hall, Englewood Cliffs, N. J., 1963.

[48] Grabowski, Josef; Skubalska, Ewa; and Smutnicki, Czslaw,

"On Flow Shop Scheduling with Release and Due Dates to Mimimize Maximum

Lateness", pp 615-620,

[49] Graves, Stephen C.,

"A Review of Production Scheduling", Operations Research, Vol. 29, No. 4,

pp 646-675, July-August 1981.

f501 Graves, Stephen C.; Meal, Harlan C.; Stefek, Daniel; and Zeghmi,

Abdel Hamid,

0 "Scheduling of Re-Entrant Flow Shops", Operations Management, Vol. 3,

No. 4, pp 197-207, August 1983.

01,1 ,V



BIBLIOGRAPHY 142

[51] Graves, Stephen C.; and Lamar, Bruce W.,

"An Integer Programming Procedure for Assembly System Design Problems",

Operations Research, Vol. 31, No. 3, pp 522-545, May-June 1983.

[52] Hardgrave, William W.; and Nemhauser, George L.,

"A Geometric Model and a Graphical Algorithm for a Sequencing Problem,

Operations Research, Vol. 11, No. 6, pp 889-900, 1963.

[531 Hopczoft, J. E.; and Tarjan, R. E.2

"Dividing a Graph into Triconnected Components", SIAM Journal of Com-

puting, Vol. 2, No. 3, pp 1 35-158, September 1973.

[541 Kimemia, Joseph G.; and Gershwin, Stanley B.,

"An Algorithm for the Computer Control of Production in a Flexible Man-

ufacturing System", LEDS-P-1134 Revised, Laboratory for Iformation and

Decision Systems, MIT, Cambridge, MA., Revised January 1982.

[551 Kirkpatrick, S.; Gelatt, Jr., C. D.; and Vecchi, M. P.,

"Optimization by Simulated Annealing", Science, Vol. 220, No. 4598, pp

671-680, 13 May, 1983.

[56] Krone, Martin J.; and Steiglitz, Kenneth,

"Heuristic-Programming Solution of a Flowshop-Scheduling Problem", pp 629-

6381.

[57] Kurtulus, L.; and Davis, E. W.,

* "Multi-Project Scheduling: Categorization of Heuristic Rules Performance",

Management Science, Vol. 28, No. 2, pp 161-172, February 1982.



BIBLIOGRAPHY 143

[581 Lageweg, B. J.; Lenstra, J. K.; and Rinnooy Kan, A. H. G.,

"Job-Shop Scheduling by Implicit Enumeration", Management Science, Vol.

24, No. 4, pp 441-450, December 1977.

[59] Lawler, E. L.,

"Sequencing Jobs to Minimize Total Weighted Completion Time Subject to

Precedence Constrain ts"; Annals of Discrete Math, North-Holland Publishing

Company, Vol. 2, pp 75-90, 1978.

[60) Lipton, Michael J.,

"Integrating Real Time Scheduling into a Fleible Automated Electronics

* Plant", SME Technical Paper # EE85-133, FMS for Electronics, February

1985.

[61) Lipton, Michael J.,

"The Development of at Real Time Scheduling System for Automated Produc-

tion", SME Technical Paper # MS85-1095, Autofact , November 1985.

(621 Marcus, Robert,

"An Application of Artificial Intelligence to Operations Research", Commu-

nications of the ACM, Vol. 27, No. 10, pp 1044-1047, October 1984.

[631 McMahon, Graham-, and Florian, Michael,

"On Scheduling with Ready Times and Due Dates to Minimize Maimum

Lateness ", Operations Research, Vol. 23, No. 3, pp 4 75-482, May-June

1975.

[64] Metropolis, Nicholas; Rosenbiuth, Arianna W.; Rosenbiuth, Mar-

shall N.; Teller, Augusta H.; and Teller, Edward,

9



BIBLIOGRAPHY 144

"Equation of State Calculations by Fast Computing Machines", The Journal

of Chemical Physics, Vol. 21, No. 6, pp 1087-1092, June, 1953.

[651 Moore, J. M.; and Wilson, R. C.,

"A Review of Simulation Research in Job Shop Scheduling", Production and

Inventory Management, pp 1-10, January 1967.

[66] Nugent, C. E.,

"On Sampling Approached to the Solution of the n-by-m Static Sequencing

Problem", PhD Thesis, Cornell University, September 1964.

[67] "Combinitorial Optimization: Annotated Bibliographies", Edited by

*O'hEigeartaigh, M.; Lenstra, J. K.; and RFLnooy Kan, A. H. G.,

John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore,

1985.

[68] Patterson, James H.,

"Alternate Methods of Project Scheduling with Limited Resources", RDTR,

Research and Development, Naval Amunition Depot, Crane, Indiana, No.

174, 1970.

[691 Peterson, James L. ,

"Petri Net Theory and the Modeling of Systems", Prentice-Hall, INC., En-

glewood Cliffs, N.J. 07632, 1981.

[70] Picard, Jean-Claude; and Queyranne, Maurice,

"The Time-Dependent Traveling Salesman Problem and Its Application to the

Tardiness Problem in One-Machine Scheduling", Operations Research, Vol.

26, No. 1, pp 86-110, January-February 1978.

@I



BIBLIOGRAPHY 145

[71] Reddy, Y. V.; and Fox, Mark S.,

"KES: An Artificial Intelligence Approach to Flexible Simulation", Technical

Report, Robotics Institute, Carnegie-Mellon Univ., September 1982.

"Petri Nets, an Introduction", Edited by W. Brauer, G. Rosenberg, A.

Salomnaa,

1982 Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, EATCS Mono-

graphs on Theoretical Computer Science, 1985.

[73] Rinnooy Kan, A. H. G. ,

"Machine Scheduling Problems", Martinus Nijhoff / The Hague, 1976.

[74] "Advances in Petri Nets 1984", -Edited by G. Rosenberg with the coop-

eration of H. Genrich and Q. Raucairol ,

Sringer-Verlag, Berlin, Heidelberg, New York, Tokyo, Lecture Notes in Com-

puter Science - 188, 1985.

f751 Alla, H.; Ladet, P.; Martinez, J.; and Silva-Suarez, M.,

"Modeling and Validation of Complex Systems by Colored Petri Nets - Ap-

plication to a Flexible Manufacturing System", Advances in Petri Nets 1984,

Edited by G. Rosenberg with the cooperation of H. Genrich and G.

* Raucairol,

Sringer-Verlag, Berlin, Heidelberg, New York, Tokyo, Lecture Notes in Com-

puter Science - 188, pp 15-31, 1985.

6 [76] Schrage, Linus and Baker, Kenneth R.,

"Dynamic Programming Solution of Sequencing Problems with Precedence



BIBLIOGRAPHY 146

Constraints", Operations Research, Vol. 26, No. 3, pp 444-449, May-June

1978.

[77] Sen, Tapan; and Gupta, Sushil K.,

"A State-of-Art Survey of Static Scheduling Research Involving Due Dates "

OMEGA, Vol. 12, No. 1, pp 63-76, 1984.

[78] Sidney, Jeffrey B.; and Steiner, George,

"Optimal Sequencing by Modular Decomposition: Polynomial Algorithms,

Operations Research, Vol.* 34, No. 4, pp 606-612, July-August 1986.

[791 Smith, Stephen F.; and Ow, Peng Si,

* "The Use of Multiple Problem Decompositions in Time Constrained Planning

Tasks", CMU-RI-TR-85-11, Carnegie-Mellon University, 1985.

[801 Sxwarc, Wlodximierx,

"Solution of the Akers-Friedman Scheduling Problem", Operations Research,

Vol. 8, No. 6, pp 782- 788, November 1960.

[811 Valdes, Jacobo,

"Parsing Flowcharts and Series-Parallel Graphs", Stanford University Com-

puter Science Department Technical Report, STAN-cs-78-682, December

1978.

[821 Valdes, Jacobo; Tarjan, Robert E.; and Lawler, Eugene L.,

"The Recognition of Series Parallel Digraphs", SIAM Journal of Computing,

Vol. 11, No. 2, pp 298-313, May 1982.

[83] Villa, A.; Fassino, B.; and Rosetto, S.,

"Performance Evaluation of Series Manufacturing Processes by Dynamic Ag-

16 A 1

19 -



BIBLIOGRAPHY 147

gregate Model. ", Computer Integrated Manufacturing, Vol. 8, pp 33-38,

1983.

[841 Villa, A.; Fassino, B.; and Rosetto, S.,

"Discrete Event Dynamic Aggeregate Model of Series Manufacturing Pro-

cesses", Vol. 8, pp 9-17, 1983.

[85] Weeks, James K.; and Fryer, John S.,

"A Simulation Study of Operating Policies in a Hypothetical Dual Constrained

Job Shop", Management Science, Vol. 22, No. 12, pp 1362-1371, August

1976.

*[861 Wiest, Jerome D.; and Levy, Ferdinand K.,

"A Management Guide to PERT/CPM : with GERT/PDM/DCPM and other

Networks", Prentice-Hail Inc., Englewood Cliffs, N.J. 07632, c19 77.

[871 Wittrock, Robert J.,

"Scheduling Algorithms for Flexible Flow Lines", IBM J. Res. Develop., Vol.

29, No. 4, pp 401-412, 1985.

1W1011


